Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colour Dyes: EU Environmental and Health Concerns addressed at Queen’s

05.06.2007
Health and environmental concerns relating to the use of colour dyes will be examined at a major EU-funded conference taking place at Queen’s University Belfast this week.

Epidemiological evidence exists to indicate regular and long term use of hair dyes for women can be associated with the development of bladder cancer. During dyeing processes, up to 40 per cent of the dyes are not consumed by the substrate to which they are applied and they then find their ways into wastewaters and are flushed into the environment.

Researchers from QUESTOR, Queen’s Environmental Centre and Europe's only Industry/University Co-operative Research Centre, will be reporting on the latest results from a four year EU-funded flagship research project into reducing the impact of such dyes on our health and the environment.

Known as SOPHIED (Sustainable Bioprocesses for the European Colour Industries), project researchers at Queen’s and their 27 European partners have been actively developing new durable bioprocesses destined to modernise the European Colour Industry.

Explaining the importance of the research to both industry and the general public, Ciaran Prunty, from QUESTOR’s Applied Technology Unit said: “Colour dyes are not something that often crop up in many people’s list of environmental and health concerns. However, almost all of the clothes and fabric that surround us have been treated with colour dyes and many of us also use dyes to colour our hair.

“The global dyestuff market produces around 1.15 million tonnes per year and generates sales of almost €5 million. It is heavily influenced by global production trends such as the shift in production of textiles to low labour cost countries. Indeed, Chinese dyestuff production now accounts for half of the total production in the world.

“For EU residents therefore, research projects such as SOPHIED are vital in providing intelligence in order to help reduce the implications of toxicity and other issues. Traditionally weaker than other sectors in research and development, the results from QUESTOR and the other partner institutions, which will be discussed at this week’s conference, will provide a shot in the arm for the dyestuff industry and pave the way for the use and development of greener technologies.”

Within the SOPHIED project, QUESTOR has a significant role in the delivery of the development of new bioremediation technology for decolouring dye wastewater.

Further information on the SPOHIED project can be found at http://www.sophied.net/ while further information on the work which takes place at QUESTOR can be found at http://questor.qub.ac.uk/newsite/index.htm

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>