Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colour Dyes: EU Environmental and Health Concerns addressed at Queen’s

05.06.2007
Health and environmental concerns relating to the use of colour dyes will be examined at a major EU-funded conference taking place at Queen’s University Belfast this week.

Epidemiological evidence exists to indicate regular and long term use of hair dyes for women can be associated with the development of bladder cancer. During dyeing processes, up to 40 per cent of the dyes are not consumed by the substrate to which they are applied and they then find their ways into wastewaters and are flushed into the environment.

Researchers from QUESTOR, Queen’s Environmental Centre and Europe's only Industry/University Co-operative Research Centre, will be reporting on the latest results from a four year EU-funded flagship research project into reducing the impact of such dyes on our health and the environment.

Known as SOPHIED (Sustainable Bioprocesses for the European Colour Industries), project researchers at Queen’s and their 27 European partners have been actively developing new durable bioprocesses destined to modernise the European Colour Industry.

Explaining the importance of the research to both industry and the general public, Ciaran Prunty, from QUESTOR’s Applied Technology Unit said: “Colour dyes are not something that often crop up in many people’s list of environmental and health concerns. However, almost all of the clothes and fabric that surround us have been treated with colour dyes and many of us also use dyes to colour our hair.

“The global dyestuff market produces around 1.15 million tonnes per year and generates sales of almost €5 million. It is heavily influenced by global production trends such as the shift in production of textiles to low labour cost countries. Indeed, Chinese dyestuff production now accounts for half of the total production in the world.

“For EU residents therefore, research projects such as SOPHIED are vital in providing intelligence in order to help reduce the implications of toxicity and other issues. Traditionally weaker than other sectors in research and development, the results from QUESTOR and the other partner institutions, which will be discussed at this week’s conference, will provide a shot in the arm for the dyestuff industry and pave the way for the use and development of greener technologies.”

Within the SOPHIED project, QUESTOR has a significant role in the delivery of the development of new bioremediation technology for decolouring dye wastewater.

Further information on the SPOHIED project can be found at http://www.sophied.net/ while further information on the work which takes place at QUESTOR can be found at http://questor.qub.ac.uk/newsite/index.htm

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>