Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning down the butterfly's wings

04.06.2007
A Belgian mathematician hopes to use the science of chaos, the butterfly effect and strange attractors to help build a complete model of climate and resources that will lead to a new approach to sustainable development. Jacques Nihoul of the department of Model Environment at the University of Liège, in Belgium, writing in the inaugural issue of the International Journal of Computing Science and Mathematics published by Inderscience, explains how a new approach to sustainable development and climate change could emerge from his research.

Sustainable development is high on the socio-political and scientific agenda. However, while it has become the focus of major attention in international from national and international organisations across the globe there is currently no all-encompassing approach to understanding what is needed to achieve it in developed and developing countries.

According to Nihoul, sustainable development involves finding a balance between the exploitation of natural (living and non-living) resources to meet the needs of the present generations without jeopardising the capacity of future generations to meet their own needs. He explains how a concept of sustainability includes a vision of the earth as almost a closed system in which we are limited in what is achievable by earth-bound resources and energy from the sun.

Current approaches to sustainable development do not fully involve complete methods and techniques for using, recycling, and replacing natural resources. Moreover, they do not take into consideration the effects of ongoing economic policies and fluctuating human populations. This is where the butterfly effect of chaos theory fame must be resurrected, says Nihoul.

The phrase "butterfly effect" was coined to capture the notion that tiny deviations in initial conditions, the flapping of a butterfly's wings in one place, for instance, could ultimately impact through a chaotic chain of events on the weather on the other side of the world. A single flap perhaps disturbing the airflow minutely, but leading to a following wind, that builds into a devastating hurricane that makes landfall. Without the butterfly the hurricane may have exhausted itself far out to sea instead.

Chaos theory is a major component of the computer models used by climatologists and weather forecasters as well as economists seeking patterns in the rise and fall of stock market values. However, Nihoul explains that while these models can provide useful information to feed into a global sustainable development policy, they must also take into account those butterflies on the periphery too. "Models of sustainable development on the ten-year and century-long timescales, must take into account both the diversity and the ‘turbulence’, the fluctuations on much shorter and more local scales," explains Nihoul.

Nihoul has developed a new modelling approach to climate, resources, economics, and policy, that sees the world system as interconnected local happenings rather than taking the smoothed global view favoured in much simpler studies. The earth cannot be modelled as a whole, he says, but rather as a mosaic of different systems, each with its own network of smaller systems and so on. Such an approach recognises the importance of global effects but also of the tiny deviations, the exquisite flapping wing of a butterfly as having a potentially enormous effect, chaotically speaking.

Jim Corlett | alfa
Further information:
http://www.inderscience.com

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>