Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pinning down the butterfly's wings

A Belgian mathematician hopes to use the science of chaos, the butterfly effect and strange attractors to help build a complete model of climate and resources that will lead to a new approach to sustainable development. Jacques Nihoul of the department of Model Environment at the University of Liège, in Belgium, writing in the inaugural issue of the International Journal of Computing Science and Mathematics published by Inderscience, explains how a new approach to sustainable development and climate change could emerge from his research.

Sustainable development is high on the socio-political and scientific agenda. However, while it has become the focus of major attention in international from national and international organisations across the globe there is currently no all-encompassing approach to understanding what is needed to achieve it in developed and developing countries.

According to Nihoul, sustainable development involves finding a balance between the exploitation of natural (living and non-living) resources to meet the needs of the present generations without jeopardising the capacity of future generations to meet their own needs. He explains how a concept of sustainability includes a vision of the earth as almost a closed system in which we are limited in what is achievable by earth-bound resources and energy from the sun.

Current approaches to sustainable development do not fully involve complete methods and techniques for using, recycling, and replacing natural resources. Moreover, they do not take into consideration the effects of ongoing economic policies and fluctuating human populations. This is where the butterfly effect of chaos theory fame must be resurrected, says Nihoul.

The phrase "butterfly effect" was coined to capture the notion that tiny deviations in initial conditions, the flapping of a butterfly's wings in one place, for instance, could ultimately impact through a chaotic chain of events on the weather on the other side of the world. A single flap perhaps disturbing the airflow minutely, but leading to a following wind, that builds into a devastating hurricane that makes landfall. Without the butterfly the hurricane may have exhausted itself far out to sea instead.

Chaos theory is a major component of the computer models used by climatologists and weather forecasters as well as economists seeking patterns in the rise and fall of stock market values. However, Nihoul explains that while these models can provide useful information to feed into a global sustainable development policy, they must also take into account those butterflies on the periphery too. "Models of sustainable development on the ten-year and century-long timescales, must take into account both the diversity and the ‘turbulence’, the fluctuations on much shorter and more local scales," explains Nihoul.

Nihoul has developed a new modelling approach to climate, resources, economics, and policy, that sees the world system as interconnected local happenings rather than taking the smoothed global view favoured in much simpler studies. The earth cannot be modelled as a whole, he says, but rather as a mosaic of different systems, each with its own network of smaller systems and so on. Such an approach recognises the importance of global effects but also of the tiny deviations, the exquisite flapping wing of a butterfly as having a potentially enormous effect, chaotically speaking.

Jim Corlett | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>