Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning down the butterfly's wings

01.06.2007
A Belgian mathematician hopes to use the science of chaos, the butterfly effect and strange attractors to help build a complete model of climate and resources that will lead to a new approach to sustainable development. Jacques Nihoul of the department of Model Environment at the University of Liège, in Belgium, writing in the inaugural issue of the International Journal of Computing Science and Mathematics published by Inderscience, explains how a new approach to sustainable development and climate change could emerge from his research.

Sustainable development is high on the socio-political and scientific agenda. However, while it has become the focus of major attention in international from national and international organisations across the globe there is currently no all-encompassing approach to understanding what is needed to achieve it in developed and developing countries.

According to Nihoul, sustainable development involves finding a balance between the exploitation of natural (living and non-living) resources to meet the needs of the present generations without jeopardising the capacity of future generations to meet their own needs. He explains how a concept of sustainability includes a vision of the earth as almost a closed system in which we are limited in what is achievable by earth-bound resources and energy from the sun.

Current approaches to sustainable development do not fully involve complete methods and techniques for using, recycling, and replacing natural resources. Moreover, they do not take into consideration the effects of ongoing economic policies and fluctuating human populations. This is where the butterfly effect of chaos theory fame must be resurrected, says Nihoul.

The phrase "butterfly effect" was coined to capture the notion that tiny deviations in initial conditions, the flapping of a butterfly's wings in one place, for instance, could ultimately impact through a chaotic chain of events on the weather on the other side of the world. A single flap perhaps disturbing the airflow minutely, but leading to a following wind, that builds into a devastating hurricane that makes landfall. Without the butterfly the hurricane may have exhausted itself far out to sea instead.

Chaos theory is a major component of the computer models used by climatologists and weather forecasters as well as economists seeking patterns in the rise and fall of stock market values. However, Nihoul explains that while these models can provide useful information to feed into a global sustainable development policy, they must also take into account those butterflies on the periphery too. "Models of sustainable development on the ten-year and century-long timescales, must take into account both the diversity and the ‘turbulence’, the fluctuations on much shorter and more local scales," explains Nihoul.

Nihoul has developed a new modelling approach to climate, resources, economics, and policy, that sees the world system as interconnected local happenings rather than taking the smoothed global view favoured in much simpler studies. The earth cannot be modelled as a whole, he says, but rather as a mosaic of different systems, each with its own network of smaller systems and so on. Such an approach recognises the importance of global effects but also of the tiny deviations, the exquisite flapping wing of a butterfly as having a potentially enormous effect, chaotically speaking.

Jim Corlett | alfa
Further information:
http://www.inderscience.com/search/index.php?action=record&rec_id=13766&prevQuery=&ps=10&m=or

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>