Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change signal detected in the Indian Ocean

31.05.2007
The signature of climate change over the past 40 years has been identified in temperatures of the Indian Ocean near Australia.

“From ocean measurements and by analysing climate simulations we can see there are changes in features of the ocean that cannot be explained by natural variability,” said CSIRO oceanographer Dr Gael Alory.

“These oceanic changes are almost certainly linked to changes in the heat structure of the atmosphere and have led to a rise in water temperatures in the sub-tropical Indian Ocean of around two degrees celsius.

“At the same time, we are seeing changes in ocean circulation in tropical regions as a result of a long-term weakening of the Pacific Ocean trade winds. This affects sea surface temperature in regions relevant to the source and distribution of rainfall across southern Australia,” Dr Alory said.

The research – by Dr Alory, his CSIRO Wealth from Oceans National Research Flagship colleague, Dr Gary Meyers, and CSIRO Marine and Atmospheric’s Dr Susan Wijffels – has recently appeared in the journal, Geophysical Research Letters. The paper examines trends in Indian Ocean temperatures over 40 years that can help scientists and resource managers understand fluctuations in rainfall patterns over southern Australia.

The research, contributing to the Australian Climate Change Science Program and partly funded by the South East Australia Climate Initiative, combined access to ocean observations using the volunteer ‘ships of opportunity’ program and a set of models used by scientists in developing the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment. Thanks to the operators and crew of commercial ships, Australian scientists have access to a regular series of ocean measurements to a depth of 800 metres across the Indian Ocean.

“The cooling is occurring between Australia and Indonesia where the Indonesian throughflow emerges into the Indian Ocean and is linked to the observed weakening of Pacific Ocean trade-winds,”The team’s key findings were:

a general warming of the ocean surface indicating the influence of rising atmospheric temperatures;

a strong warming (about 2°C over 40 years) between 40°S and 50°S down to a depth of 800 metres;

and, sub-surface cooling in the tropics due to deep waters rising closer to the surface.

Dr Alory says the research confirmed a long-held view that temperature changes in the Pacific and Indian oceans can be partly explained by the effect of the ‘Indonesian throughflow’ – a system of currents which transports water between the oceans through the maze of straits and passages in the Indonesian Archipelago.

“The cooling is occurring between Australia and Indonesia where the Indonesian throughflow emerges into the Indian Ocean and is linked to the observed weakening of Pacific Ocean trade-winds,” he says. The models also helped to explain trends in the subtropical Indian Ocean temperatures and changes in relevant ocean features. In this area, the deep-reaching warming is due to a strengthening of westerly winds drawing a southward shift in ocean current patterns. These findings are consistent with research in the South Atlantic and South Pacific ocean basins.

He said that the change in atmospheric conditions altering ocean temperatures – weakening of Pacific Ocean trade winds and strengthening of westerly winds – have been mostly attributed to human activity: the production of aerosols (tiny atmospheric particles), ozone depletion, and greenhouse gases. Strengthening westerlies are related to changes in the Southern Annular Mode – an atmospheric feature similar to the El Nino Southern Oscillation and considered the dominant influence on Southern Hemisphere atmospheric variability.

Dr Alory said climate models used in the IPCC Fourth Assessment show that changes in westerly wind patterns are expected to intensify in a global warming scenario and to accentuate the southward shift in sub-tropical ocean circulation patterns.

Dr. Gael Alory | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>