Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pointing a finger at the source of fecal bacteria

25.05.2007
Scientists use 'toolbox' approach to pinpoint contamination sources in Nebraska watershed

Excessive levels of fecal bacteria were to blame for almost 60 percent of Nebraska streams deemed impaired by federal and state environmental laws in 2004. In order to develop effective pollution-control strategies, it is important for researchers to identify the source of the contamination. By using multiple methods, or a “toolbox” approach, to determine the origin of fecal pollution in streams, researchers were able to identify the source of fecal bacteria with greater certainty than if testing with a single method.

In collaboration with the Nebraska Department of Environmental Quality, the U.S. Environmental Protection Agency (EPA), and the University of Cincinnati, U.S. Geological Survey (USGS) scientists used a toolbox approach when investigating the sources of fecal bacteria within the Plum Creek watershed in south-central Nebraska. The scientists report their findings in the May-June 2007 issue of the Journal of Environmental Quality.

This research was funded by the Nebraska Department of Environmental Quality, the U.S. Geological Survey Cooperative Water Program, and the U.S. Environmental Protection Agency.

In 2001, monitoring studies by the Nebraska Department of Environmental Quality named Plum Creek the most contaminated tributary to the middle reaches of the Platte River. The researchers used two fecal source-tracking tools to analyze contaminated water and stream-sediment samples in the Plum Creek watershed.

The source-tracking tools use genetic material from bacteria collected in water and sediment samples to determine their source, either by comparing the genetic material with that of known fecal bacteria sources, or by looking for a “marker” within the genetic material that is associated with a specific fecal source. The results of the study revealed that cattle and wildlife were the dominant sources of fecal bacteria found in water and stream sediment samples at the main study site located in an upper reach of the creek.

“While the two methods led to similar overall interpretations, using both methods together gave us a clearer picture of potential sources and the strengths and weaknesses of the methods used,” said USGS Hydrologist Jason Vogel, lead author of the study. “Additionally, results from bacteria found in stream-bottom sediment also suggest that different tools for tracking fecal contamination may have varying relevance to the more specific goal of tracking the sources of E. coli in water or soil within the watershed.”

Ongoing studies at the USGS and EPA are testing the use of microorganisms as tools for tracking fecal contamination. Fecal bacteria can enter watersheds from specific sources such as wastewater treatment outfalls, and diffuse sources such as runoff from fields where livestock waste has been applied as fertilizer. Determining the source of the bacteria is necessary to implement appropriate pollution-control practices and comply with water-quality standards required by the Clean Water Act. Further research is needed to continue to develop and refine existing and new tools for identifying the sources of fecal contamination in water and sediment.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org
http://www.agronomy.org

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>