Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pointing a finger at the source of fecal bacteria

25.05.2007
Scientists use 'toolbox' approach to pinpoint contamination sources in Nebraska watershed

Excessive levels of fecal bacteria were to blame for almost 60 percent of Nebraska streams deemed impaired by federal and state environmental laws in 2004. In order to develop effective pollution-control strategies, it is important for researchers to identify the source of the contamination. By using multiple methods, or a “toolbox” approach, to determine the origin of fecal pollution in streams, researchers were able to identify the source of fecal bacteria with greater certainty than if testing with a single method.

In collaboration with the Nebraska Department of Environmental Quality, the U.S. Environmental Protection Agency (EPA), and the University of Cincinnati, U.S. Geological Survey (USGS) scientists used a toolbox approach when investigating the sources of fecal bacteria within the Plum Creek watershed in south-central Nebraska. The scientists report their findings in the May-June 2007 issue of the Journal of Environmental Quality.

This research was funded by the Nebraska Department of Environmental Quality, the U.S. Geological Survey Cooperative Water Program, and the U.S. Environmental Protection Agency.

In 2001, monitoring studies by the Nebraska Department of Environmental Quality named Plum Creek the most contaminated tributary to the middle reaches of the Platte River. The researchers used two fecal source-tracking tools to analyze contaminated water and stream-sediment samples in the Plum Creek watershed.

The source-tracking tools use genetic material from bacteria collected in water and sediment samples to determine their source, either by comparing the genetic material with that of known fecal bacteria sources, or by looking for a “marker” within the genetic material that is associated with a specific fecal source. The results of the study revealed that cattle and wildlife were the dominant sources of fecal bacteria found in water and stream sediment samples at the main study site located in an upper reach of the creek.

“While the two methods led to similar overall interpretations, using both methods together gave us a clearer picture of potential sources and the strengths and weaknesses of the methods used,” said USGS Hydrologist Jason Vogel, lead author of the study. “Additionally, results from bacteria found in stream-bottom sediment also suggest that different tools for tracking fecal contamination may have varying relevance to the more specific goal of tracking the sources of E. coli in water or soil within the watershed.”

Ongoing studies at the USGS and EPA are testing the use of microorganisms as tools for tracking fecal contamination. Fecal bacteria can enter watersheds from specific sources such as wastewater treatment outfalls, and diffuse sources such as runoff from fields where livestock waste has been applied as fertilizer. Determining the source of the bacteria is necessary to implement appropriate pollution-control practices and comply with water-quality standards required by the Clean Water Act. Further research is needed to continue to develop and refine existing and new tools for identifying the sources of fecal contamination in water and sediment.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>