Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asexual worm quickly adapts to soil contamination

15.05.2007
Soil contaminants lead to rapid genetic adaptations in the nematode Acrobeloides nanus. The worms from contaminated soil live longer and lay more eggs under polluted conditions than the worms from unpolluted soil. Dutch-sponsored researcher Agnieszka Doroszuk demonstrated this in her study into the long-term effects of environmental pollution on soil organisms.

Environmental pollution is an important cause of stress in natural populations. This not only has consequences for the size, dynamics and structure of the population but it can also lead to genetic changes and adaptations. Doroszuk investigated the long-term effects of pollution on the bacteria-eating nematode Acrobeloides nanus. This asexually reproducing nematode is easy to culture and study. The research is innovative due to a multidisciplinary approach, in which methods from various disciplines such as ecology, toxicology, molecular biology and evolutionary biology provide insights into the effect of soil pollution at different levels of biological organisation.

Genetic adaptation

The nematode was exposed to a combination of different pH and copper values. As well as their individual effects, the pH and the copper levels in the soil can exert a synergistic effect on the nematode population. Unexpectedly fast adaptation was observed and considerable genetic changes took place. As a result of this the nematodes in the polluted soil became resistant to the contamination. In the contaminated culturing medium they laid more eggs and lived for longer than the nematodes from the clean soil.

Asexual

The rapid adaptation to the environment in an asexual species is an interesting finding. It contradicts the general opinion that asexual species have low adaptive potential and that they adapt to stress less easily than sexual species. At present these asexual species are used as test organisms in ecotoxicological risk evaluations. The question now arises as to whether they are suitable for this purpose.

The results of this study are important for the development of protection strategies for natural populations. This can be realised by focusing environmental management more on functions such as biomass turnover rate and less on the structure and biomasss of populations per se. In her thesis Doroszuk shows that contributions from various research disciplines are crucial for insight into underlying mechanisms of the response to stress and for the consequences for the natural system.

Dr Agnieszka Doroszuk | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_72DHGG_Eng
http://www.wur.nl

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>