Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asexual worm quickly adapts to soil contamination

15.05.2007
Soil contaminants lead to rapid genetic adaptations in the nematode Acrobeloides nanus. The worms from contaminated soil live longer and lay more eggs under polluted conditions than the worms from unpolluted soil. Dutch-sponsored researcher Agnieszka Doroszuk demonstrated this in her study into the long-term effects of environmental pollution on soil organisms.

Environmental pollution is an important cause of stress in natural populations. This not only has consequences for the size, dynamics and structure of the population but it can also lead to genetic changes and adaptations. Doroszuk investigated the long-term effects of pollution on the bacteria-eating nematode Acrobeloides nanus. This asexually reproducing nematode is easy to culture and study. The research is innovative due to a multidisciplinary approach, in which methods from various disciplines such as ecology, toxicology, molecular biology and evolutionary biology provide insights into the effect of soil pollution at different levels of biological organisation.

Genetic adaptation

The nematode was exposed to a combination of different pH and copper values. As well as their individual effects, the pH and the copper levels in the soil can exert a synergistic effect on the nematode population. Unexpectedly fast adaptation was observed and considerable genetic changes took place. As a result of this the nematodes in the polluted soil became resistant to the contamination. In the contaminated culturing medium they laid more eggs and lived for longer than the nematodes from the clean soil.

Asexual

The rapid adaptation to the environment in an asexual species is an interesting finding. It contradicts the general opinion that asexual species have low adaptive potential and that they adapt to stress less easily than sexual species. At present these asexual species are used as test organisms in ecotoxicological risk evaluations. The question now arises as to whether they are suitable for this purpose.

The results of this study are important for the development of protection strategies for natural populations. This can be realised by focusing environmental management more on functions such as biomass turnover rate and less on the structure and biomasss of populations per se. In her thesis Doroszuk shows that contributions from various research disciplines are crucial for insight into underlying mechanisms of the response to stress and for the consequences for the natural system.

Dr Agnieszka Doroszuk | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_72DHGG_Eng
http://www.wur.nl

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>