Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: As rainfall changes, tropical plants may acclimate

09.05.2007
Tropical plants may be more adaptable than commonly thought to changing rainfall patterns expected to accompany a warming climate, new research shows.

A University of Florida scientist and other researchers have found that plants in Hawaii have the ability to acclimate to big changes in rainfall in at least one important respect – how they get nutrients. The plants largely rely on one form of the vital nutrient nitrogen in moist areas. But in the still wetter terrain that characterizes some rainforests, they switch to another form of nitrogen that becomes more available in those conditions.

The findings, reported in paper set to appear this week in the online edition of the Proceedings of the National Academy of Sciences, present a notable exception to the commonly held idea that tropical plants are highly specialized in their own little environmental niches – and thus very sensitive to disturbances of those niches.

That could be good for the plants because climate change is expected to radically alter rainfall patterns in the tropics. But it comes with a caveat: Nutrient uptake is only one of many ingredients in plant life. Other unrelated changes that accompany a warming climate could still affect plant distribution and growth, such as those that hold sway over pollinators, insect predators or invasive plants.

"These plants should be able to do OK in terms of their nitrogen nutrition, even with the climate changing," said Ted Schuur, a UF assistant professor of ecology and one of four authors of the paper. "But of course, we only studied one group of organisms and one mechanism in this study" and plants depend on many different mechanisms to coexist, some of which may also change with changing rainfall.

The scientists researched plant growth at six sites on the slopes of Mount Haleakala, a volcano on the island of Maui. The sites were ideal because they share the same species, elevations and soils but have vastly different rainfall. The wettest rainforest sites receive an astonishing 196 inches of rain annually, while the driest sites in this study get about 79 inches.

"That's the range of rainfall you might find across the entire tropics, but that would usually be over hundreds or thousands of kilometers," Schuur said. "I can visit all of these forest sites in a single day."

The scientists analyzed nitrogen isotopes in the soil and leaf samples of four plant species at each site. They learned that drier soils contained more nitrogen in the form of nitrate, while wetter soils contained more nitrogen in the form of ammonia. Isotopic analysis of the plants revealed that they switched from nitrate to ammonia "abruptly, and in unison" once the rainfall reached a certain level.

"There's an abrupt change halfway through the rainfall gradient, and they all switch to this other form for their nutrition," Schuur said.

That's a surprise partly because of the uniformity of response, he said. Such uniformity sharply contrasts the conventional notion that tropical plant species coexist by adopting widely different strategies to getting what they need. At least with regard to nitrogen uptake, all the Hawaiian plants acted the same -- and at the same time.

" … This does not support the idea that natural selection has caused species to diverge into highly specialized niches for nitrogen consumption," the PNAS paper says.

That's a positive sign considering that as the Earth warms, some areas of the tropics are widely expected to be wetter, some drier. So, at least one of dozens of variables that will change with precipitation changes – nutrient uptake – might not affect tropical plants. That said, plenty of others could, Schuur said.

Ted Schuur | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>