Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists: As rainfall changes, tropical plants may acclimate

Tropical plants may be more adaptable than commonly thought to changing rainfall patterns expected to accompany a warming climate, new research shows.

A University of Florida scientist and other researchers have found that plants in Hawaii have the ability to acclimate to big changes in rainfall in at least one important respect – how they get nutrients. The plants largely rely on one form of the vital nutrient nitrogen in moist areas. But in the still wetter terrain that characterizes some rainforests, they switch to another form of nitrogen that becomes more available in those conditions.

The findings, reported in paper set to appear this week in the online edition of the Proceedings of the National Academy of Sciences, present a notable exception to the commonly held idea that tropical plants are highly specialized in their own little environmental niches – and thus very sensitive to disturbances of those niches.

That could be good for the plants because climate change is expected to radically alter rainfall patterns in the tropics. But it comes with a caveat: Nutrient uptake is only one of many ingredients in plant life. Other unrelated changes that accompany a warming climate could still affect plant distribution and growth, such as those that hold sway over pollinators, insect predators or invasive plants.

"These plants should be able to do OK in terms of their nitrogen nutrition, even with the climate changing," said Ted Schuur, a UF assistant professor of ecology and one of four authors of the paper. "But of course, we only studied one group of organisms and one mechanism in this study" and plants depend on many different mechanisms to coexist, some of which may also change with changing rainfall.

The scientists researched plant growth at six sites on the slopes of Mount Haleakala, a volcano on the island of Maui. The sites were ideal because they share the same species, elevations and soils but have vastly different rainfall. The wettest rainforest sites receive an astonishing 196 inches of rain annually, while the driest sites in this study get about 79 inches.

"That's the range of rainfall you might find across the entire tropics, but that would usually be over hundreds or thousands of kilometers," Schuur said. "I can visit all of these forest sites in a single day."

The scientists analyzed nitrogen isotopes in the soil and leaf samples of four plant species at each site. They learned that drier soils contained more nitrogen in the form of nitrate, while wetter soils contained more nitrogen in the form of ammonia. Isotopic analysis of the plants revealed that they switched from nitrate to ammonia "abruptly, and in unison" once the rainfall reached a certain level.

"There's an abrupt change halfway through the rainfall gradient, and they all switch to this other form for their nutrition," Schuur said.

That's a surprise partly because of the uniformity of response, he said. Such uniformity sharply contrasts the conventional notion that tropical plant species coexist by adopting widely different strategies to getting what they need. At least with regard to nitrogen uptake, all the Hawaiian plants acted the same -- and at the same time.

" … This does not support the idea that natural selection has caused species to diverge into highly specialized niches for nitrogen consumption," the PNAS paper says.

That's a positive sign considering that as the Earth warms, some areas of the tropics are widely expected to be wetter, some drier. So, at least one of dozens of variables that will change with precipitation changes – nutrient uptake – might not affect tropical plants. That said, plenty of others could, Schuur said.

Ted Schuur | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>