Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Reef Fish Make Their Way Home

07.05.2007
Coral reef fish hatchlings dispersed by ocean currents are able to make their way back to their home reefs again to spawn, says a groundbreaking study published today in the journal Science.

The study, whose findings are considered a major advance for fish conservation biology, was conducted by an international team of scientists from Australia, France, and the U.S. using a novel tagging method to track two populations of fish, including the endearing orange, black, and white reef-dwelling clownfish made famous in the movie “Finding Nemo.”

Led by Dr. Geoff Jones and Dr. Glenn Almany of the Australian Research Council Centre of Excellence for Coral Reef Studies at James Cook University, the study took place on coral reefs in a marine protected area in Papua New Guinea. Scientists tested a new method to trace fish from birth to spawning and detect the percentage of fish hatched on one reef that return there to spawn. The techniques used in this study can reveal the extent to which fish populations on separate reefs are isolated breeding populations, or connected by fish movements (known as ‘connectivity’). Such information is critical to effective management of reef fish populations.

Following two fish species, the clownfish (Amphiprion percula) and the vagabond butterflyfish (Chaetodon vagabundus), the scientists found that young of both species made it back to their home reef about 60 percent of the time⎯a surprising result for fish larvae that had dispersed from a small reef habitat into a large area. The researchers tagged fish at the reef surrounding a small island, Kimbe Island, within a recently-designated Marine Protected Area in Kimbe Bay, Papua New Guinea.

“If we understand how fish larvae disperse, it will enable better design of marine protected areas, and this will help in the rebuilding of threatened fish populations,” said Almany, lead author on the Science article. Other members of the team were Michael Berumen of the University of Arkansas, Woods Hole Oceanographic Institution (WHOI) biologist Simon Thorrold, and Serge Planes of the Universite de Perpignan.

The study’s results highlight three notable achievements. This is the first time scientists have successfully used a new internal tagging method in the field, as well as in the lab. It is the first larval tagging study of a pelagic (open water-swimming) spawning fish. It is also the first comparison between two fish species with different reproductive strategies and dispersal patterns.

The tagging method the team employed was developed by Simon Thorrold at WHOI. The process involves injecting minute quantities of harmless stable barium isotopes into breeding female fish of both species. “The isotopes are passed to the offspring and incorporated into the ear bones - or otoliths - of the developing embryos,” said Thorrold, “thereby labeling the hatchlings at birth with the isotopes as permanent traceable tags.”

Two months after injecting females, the scientists returned and captured newly settled fish at the same reef to determine how many had returned to their home reef and how many had migrated from other nearby reefs. The percentage of fish whose otoliths were labeled with the rare barium isotope was identified at WHOI through a technique known as laser ablation inductively coupled plasma mass spectrometry (ICP-MS).

The two species have different reproductive styles. Butterflyfish release eggs and sperm into the water, and the larvae drift and swim freely for more than a month before finding a home reef. In contrast, clownfish spawn eggs that are attached to the reef for a week before the larvae hatch and disperse in oceanic waters for 10-14 days. The larval clownfish must then find a reef, and a suitable anemone, that will be home for the remainder of its life. Currents inevitably carry both species away from the parental reef, because larval fish cannot swim well, but this study confirms that the majority of both species appear to find their way home after completing the oceanic larval phase.

Reef fish conservation programs utilizing marine protected areas are based on assumptions about how many fish migrate in from other areas and how many return to home areas to spawn. At a time of increasing pressures on coral reef ecosystems, this study provides an important piece for planning the optimum size of coral reef protected areas and breeding populations.

“Just as importantly,” said Almany of their results, “40 percent of the juveniles came from other reefs that are at least ten kilometers (five miles) away, which indicates significant exchange between populations separated by open sea. This shows how marine protected areas can contribute to maintaining fish populations outside no-fishing zones.”

The successful test of this method in the field offers scientists and managers a powerful new way to evaluate the effectiveness of management models and practices based on direct information. Thorrold is continuing this work, using the maternal labeling technique to evaluate the degree of connectivity in other fish populations, including endangered Nassau grouper in the Caribbean.

This work was funded in part by the National Science Foundation.

Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>