Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Reef Fish Make Their Way Home

07.05.2007
Coral reef fish hatchlings dispersed by ocean currents are able to make their way back to their home reefs again to spawn, says a groundbreaking study published today in the journal Science.

The study, whose findings are considered a major advance for fish conservation biology, was conducted by an international team of scientists from Australia, France, and the U.S. using a novel tagging method to track two populations of fish, including the endearing orange, black, and white reef-dwelling clownfish made famous in the movie “Finding Nemo.”

Led by Dr. Geoff Jones and Dr. Glenn Almany of the Australian Research Council Centre of Excellence for Coral Reef Studies at James Cook University, the study took place on coral reefs in a marine protected area in Papua New Guinea. Scientists tested a new method to trace fish from birth to spawning and detect the percentage of fish hatched on one reef that return there to spawn. The techniques used in this study can reveal the extent to which fish populations on separate reefs are isolated breeding populations, or connected by fish movements (known as ‘connectivity’). Such information is critical to effective management of reef fish populations.

Following two fish species, the clownfish (Amphiprion percula) and the vagabond butterflyfish (Chaetodon vagabundus), the scientists found that young of both species made it back to their home reef about 60 percent of the time⎯a surprising result for fish larvae that had dispersed from a small reef habitat into a large area. The researchers tagged fish at the reef surrounding a small island, Kimbe Island, within a recently-designated Marine Protected Area in Kimbe Bay, Papua New Guinea.

“If we understand how fish larvae disperse, it will enable better design of marine protected areas, and this will help in the rebuilding of threatened fish populations,” said Almany, lead author on the Science article. Other members of the team were Michael Berumen of the University of Arkansas, Woods Hole Oceanographic Institution (WHOI) biologist Simon Thorrold, and Serge Planes of the Universite de Perpignan.

The study’s results highlight three notable achievements. This is the first time scientists have successfully used a new internal tagging method in the field, as well as in the lab. It is the first larval tagging study of a pelagic (open water-swimming) spawning fish. It is also the first comparison between two fish species with different reproductive strategies and dispersal patterns.

The tagging method the team employed was developed by Simon Thorrold at WHOI. The process involves injecting minute quantities of harmless stable barium isotopes into breeding female fish of both species. “The isotopes are passed to the offspring and incorporated into the ear bones - or otoliths - of the developing embryos,” said Thorrold, “thereby labeling the hatchlings at birth with the isotopes as permanent traceable tags.”

Two months after injecting females, the scientists returned and captured newly settled fish at the same reef to determine how many had returned to their home reef and how many had migrated from other nearby reefs. The percentage of fish whose otoliths were labeled with the rare barium isotope was identified at WHOI through a technique known as laser ablation inductively coupled plasma mass spectrometry (ICP-MS).

The two species have different reproductive styles. Butterflyfish release eggs and sperm into the water, and the larvae drift and swim freely for more than a month before finding a home reef. In contrast, clownfish spawn eggs that are attached to the reef for a week before the larvae hatch and disperse in oceanic waters for 10-14 days. The larval clownfish must then find a reef, and a suitable anemone, that will be home for the remainder of its life. Currents inevitably carry both species away from the parental reef, because larval fish cannot swim well, but this study confirms that the majority of both species appear to find their way home after completing the oceanic larval phase.

Reef fish conservation programs utilizing marine protected areas are based on assumptions about how many fish migrate in from other areas and how many return to home areas to spawn. At a time of increasing pressures on coral reef ecosystems, this study provides an important piece for planning the optimum size of coral reef protected areas and breeding populations.

“Just as importantly,” said Almany of their results, “40 percent of the juveniles came from other reefs that are at least ten kilometers (five miles) away, which indicates significant exchange between populations separated by open sea. This shows how marine protected areas can contribute to maintaining fish populations outside no-fishing zones.”

The successful test of this method in the field offers scientists and managers a powerful new way to evaluate the effectiveness of management models and practices based on direct information. Thorrold is continuing this work, using the maternal labeling technique to evaluate the degree of connectivity in other fish populations, including endangered Nassau grouper in the Caribbean.

This work was funded in part by the National Science Foundation.

Media Relations Office | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>