Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alien plants attack using 'resource conservation' as weapon, researchers say

03.05.2007
One of the most serious and least understood threats to the world's ecosystems is the problem of invasive species-exotic plants, animals and other organisms that are brought into habitats and subsequently spread at a rapid rate, often replacing native species and reducing biodiversity.

Invaders thrive best in regions where there is an abundance of materials for growth, such as water, nutrients and light. Biologists have long assumed that alien species pose less of a threat in resource-poor environments because they are less able to compete with indigenous plants, which have adapted to their habitats over thousands of years. But a new study by Stanford University researchers finds that invasive plants can flourish in low-resource environments by adopting efficient ways to use available resources.

The finding, which sheds new light on how invaders achieve success, may change the way scientists think about invasive species and how to curb them, according the authors of the study published in the April 26 issue of the journal Nature.

"What was very intriguing to us is that there are invasive species that are capable of invading low-resource systems," said Jennifer Funk, a postdoctoral fellow in the Stanford Department of Biological Sciences and lead author of the study. "Typically people think low-resource systems aren't invasible. People think of the native plants as having a home-field advantage, because they evolved there."

Smart plant growth

Plants depend on sunlight, nutrients and water to survive, and a shortage of any one of these will restrict how fast they can grow. When plants use these inputs more efficiently, however, they can photosynthesize-and thus grow and spread-faster, according to Funk and Vitousek.

To compare the resource-use efficiencies of alien and native plants, the researchers studied three ecosystems in Hawaii-a forested area with limited light, volcanic soils with low nutrients and a desert. They compared 19 invaders with 19 closely related indigenous plants-for example, an invasive raspberry versus a native raspberry. Using an electronic device that clamped onto the leaves of the plants, the scientists controlled the amount of light reaching the leaf and then measured photosynthesis and water-use rates. Later, they ground up and analyzed the leaves in a laboratory to determine nutrient content. By calculating the ratio of resource use to the rate of photosynthesis, the scientists were able to determine the resource-use efficiency for each plant.

"Invasive plants were more efficient on short-time scales, but overall there was no difference in the long term," Funk said. "We were surprised that the invasive plants were not at a disadvantage under conditions where resources were scarce."

Knowing your foe

These results have important implications for controlling invasive species, said Chris Field, professor of biological sciences at Stanford and director of the Carnegie Institution's Department of Global Ecology.

"If you want to manage an invasive, you need to know what the characteristics of the invasives are and target your strategy to those characteristics," he said.

Funk pointed to recent experiments that tried to eliminate invaders by deliberately reducing available resources-for example, by mixing sugar into the soil to lock up nutrients or by blocking sunlight with tarps. But these experiments had relatively limited success. "Our results can maybe explain why that method didn't work for all the invasive species," Funk said.

Current techniques for fighting invasive species typically involve early detection followed by a variety of removal methods, such as weed-whacking or introducing natural predators of the invasive plants, said study co-author Peter Vitousek, professor of biological sciences at Stanford.

To determine which species warrant action, some government agencies in several countries, including the U.S. National Park Service, maintain comprehensive lists of potential invaders, he said. Scientists look at a variety of factors to assess which plants should be included on the lists, but models for determining which invasive species pose the greatest threat are far from complete, Funk added.

"With this new information, we can now take a look at those lists with the thought in mind that we better consider adding species that are really resource efficient," Vitousek said. "And then we can hunt those down."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu/news/
http://www.stanford.edu/group/Vitousek/

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>