Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Do Oysters Choose to Live Where They Could be Eaten?

02.05.2007
New research details oyster’s selection of home ties to future reproductive capacity

There are many reasons why living in dense groups with others of your own kind is a good idea. Oftentimes, aggregations of a species serve as protection from predators and harsh environments or may be beneficial to future reproductive success. However, in the case of oyster larvae, the selection of a place to call home can be a life or death decision.

According to an article in the May edition of Ecological Monographs, a team of scientists has found that despite the risk of being eaten by cannibalistic adults, oyster larvae choose to settle in areas of high oyster concentrations to take advantage of future benefits of increased reproductive capacity when they mature.“Oyster larvae make a life or death decision when they get their one chance to select where to attach themselves to the bottom,” said University of Maryland Center for Environmental Science Chesapeake Biological Laboratory researcher Dr. Mario Tamburri. “Our research shows that oyster larvae are willing to risk predation by adult oysters to cash in on the benefits accrued by spending the remainder of their lives among a large number of their species.”

Tamburri worked with UCLA researcher Drs. Richard K. Zimmer and Cheryl Ann Zimmer to examine this apparent paradox. The group set out to find: (1) if oyster larvae are attracted to settle on oyster reefs among adults of the same species because of the potential benefits to group-living, (2) if adult oysters will eat larvae of the same species, and (3) how risky is gregarious settlement among cannibals.

Using a series of laboratory experiments and field surveys, Tamburri has demonstrated that oyster larvae are attracted from a distance by the scent of adults from the same species. Yet, death for a larvae captured by a feeding adult is nearly certain at greater than 90 percent.

A series of experiments examining the feeding currents produced by adult oysters and how larvae actively settle on reefs helped solved the puzzle. Oyster feeding currents are actually very weak, so while they will readily eat larvae if captured, settling larvae are just not captured very often. In fact, when a comparison of being captured versus landing on a suitable location to grow was conducted, it was found that more than 95 percent of an oyster reef is a safe zone for larvae. Given this low cannibalism risk at settlement, future payoffs appear to have driven the evolution of a gregarious settlement cue that promotes group living in oysters.

The article, “Mechanisms reconciling gregarious larval settlement with adult cannibalism,” is in the May edition of the Ecological Society of America’s journal Ecological Monographs and can de downloaded from http://www.esapubs.org/esapubs/journals/monographs.htm.

The University of Maryland Center for Environmental Science is the principal research institution for advanced environmental research and graduate studies within the University System of Maryland. UMCES researchers are helping improve our scientific understanding of Maryland, the region and the world through its three laboratories, Chesapeake Biological Laboratory in Solomons, Appalachian Laboratory in Frostburg, and Horn Point Laboratory in Cambridge, as well as the Maryland Sea Grant College.

Christopher Conner | EurekAlert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>