Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australia under the smoke of South American wildfires

30.04.2007
The carbon monoxide that hangs above Australia during the wildfire season originates largely from South American and not Australian wildfires. That was confirmed with measurements by the Dutch-German satellite instrument SCIAMACHY on the European environmental satellite Envisat. Annemieke Gloudemans from the Netherlands Institute for Space Research (SRON) presented this research last week during the Envisat-conference in Montreux. ‘Good space sensors are vital for mapping emission sources.’

Australia's wildfire season is notorious. Dependent on the aridity, much of the continent is prone to such fires between October and March. The direct consequences for humans and the environment are disastrous, partly due to the toxic carbon monoxide released during the fires. Gloudemans: ‘In the southern hemisphere, incineration of biomass is the biggest source of carbon monoxide in the lower layers of the atmosphere.’

The SCIAMACHY sensors, developed by SRON some ten years ago, are unique because they can detect carbon monoxide throughout the entire atmosphere, from the uppermost layer to the ground. ‘This therefore allows us to map the sources of carbon monoxide and look where they are blown to’, says Gloudemans. ‘We have done that for all of the continents in the southern hemisphere: South America, Australia, and Southern Africa, with surprising results.’

Blown over

With SCIAMACHY, Annemieke Gloudemans and her colleagues at Utrecht University, the Vrije Universiteit Amsterdam and the Netherlands Meteorological Institute (KNMI) saw large quantities of released carbon monoxide above the southern continents. These quantities clearly matched the intensity of wildfires observed by the American satellites EOS-TERRA and EOS-AQUA. ‘Yet we also saw increased concentrations of carbon monoxide above Central Australia, where there is desert’, says Gloudemans. ‘Initially we assumed that the wildfires in North Australia were responsible for this. Yet when we took a closer look at the transport of carbon monoxide, we had to conclude that the majority originated from fires in South America. Even the carbon monoxide above the fires in North Australia originated for one-third from South America.’

New Dutch instrument

‘The only way to accurately follow the emission and transport of carbon monoxide is to use satellites with sensors that are sensitive enough for short-wave infrared radiation. That also applies for methane, after carbon dioxide the most important anthropogenic greenhouse gas’, explains Ilse Aben, head of atmospheric research at SRON. ‘SCIAMACHY is currently unique in that area but can only provide a picture of the situation once every month. Moreover Envisat will be decommissioned in about 2010. Unless we work quickly on a successor, we will no longer be able to track the emission and spread of these substances. Moreover in the future, we want to measure carbon monoxide and methane on a daily basis and with a greater degree of sensitivity. Consequently at SRON, we are busy developing sensors for a new Dutch space instrument that will be able to provide a very detailed picture of the composition of the atmosphere.’

The instrument, TROPOMI, must gain a place on the earth observation mission TRAQ that is being studied by the European Space Agency (ESA) as a so-called Earth Explorer Mission. TRAQ is devoted to research on air quality and climate change. The most important parties from the Dutch space sector are involved in the preparations for TROPOMI: SRON, Dutch Space, TNO, KNMI and the Netherlands Agency for Aerospace Programmes (NIVR). KNMI will provide the principal investigator for the instrument.

Immersed gratings

Especially for the sensors of TROPOMI, SRON, together with TNO, has developed a smart innovative manner to unravel the short-wave infrared radiation in detail whilst still ensuring the compact size of the instrument. The institutes recently made a joint investment to refine the production process of the 'in silicon immersed gratings’ needed for this. Avri Selig, head Earth-Oriented Science at SRON: ‘The prototype of the TROPOMI infrared module is currently being built with TNO and MECON, under the leadership of SRON. I expect a lot from this development aimed at continuing and strongly improving the measurements of carbon monoxide and methane.’

For the time being Annemieke Gloudemans is delighted with the data from SCIAMACHY. ‘A wealth of information. In the near future, we will gain a lot of new important insights into the emission and spread of carbon monoxide and methane in particular’. Even on holiday, the enthusiastic researcher is busy with her subject. ‘When I took a helicopter trip in New Zealand recently, I saw with my own eyes that smoke particles from the yearly Australian wildfires form annual rings as it were in the permanent snow on the mountain tops.’

The Envisat conference was held from 23 to 27 April in the Swiss town of Montreux to mark the fifth anniversary of Envisat being operational in space.

SRON

SRON Netherlands Institute for Space Research is an expertise institute of the Netherlands Organisation for Scientific Research (NWO). The institute develops and uses innovative instruments for groundbreaking research from space.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/index.php?option=com_content&task=view&id=1390&Itemid=588

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>