Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Alternative fuels league table

Norwegian scientists have drawn up a league table of alternative fuels for cars. Their analysis is based on a well-to-wheel approach that takes into account manufacturing, energy use, greenhouse gas emissions, and local and regional pollutants.

Bottom of the table, unsurprisingly, are petrol vehicles, but coming in a close second last are hybrid vehicles that can run on compressed natural gas or petrol. Top of their league are fuel cell powered vehicles using hydrogen gas obtained from natural gas methane.

Karl Høyer of Oslo University College and Erling Holden of Western Norway Research Institute, Norway, and reported in Inderscience's International Journal of Alternative Propulsion their analysis of fuel chains including petrol, natural gas, and alternative fuel sources such as methanol and ethanol, hydrogen and biofuels.

"Alternative fuels are not in themselves a road towards sustainable mobility," the researchers say. However, their analysis places petrol and hybrid vehicles firmly at the bottom of the league table when all energy factors from source to consumer use are taken into account. "Any alternative fuel we considered is better than the cars that are used mostly today," they add.

Currently, there is no consensus regarding sustainable transport development. Even if a particular energy reduction goal is set for the transport sector there is no agreement on actions that should be taken to achieve this goal. Different lobbying groups have different approaches to the problem and opponents of any particular approach can usually find evidence to suggest a particular approach is not sustainable. The ongoing biofuel debate is a case in point.

Nevertheless, there are several factors that must be considered in assessing a particular alternative fuel: the efficiency route, the substitution route and the reduction route. Each has its strong defenders, say Høyer and Holden, but in reality there are substantial grey areas between them. One important facet of the debate that is often overlooked, is to ensure the three impact categories - energy use, carbon emissions, and nitrogen oxide pollution - are considered together. "This is a highly problematic task and should only be carried out with great care," the team adds.

They used a simple ranking system to create their league table, based on giving each energy form a weight from 1 to 16 depending on its impact in these three areas. When the weights are added up from well to wheel, they provide an overall value for each energy chain. For example, extraction of natural gas, processing into liquefied hydrogen, storage, and end use in a fuel cell car. The energy chains giving the lowest sum-figures are the highest in the league table and those with largest figures are considered potentially the most environmentally harmful.

Interestingly, the team's analysis puts a fossil-based alternative, natural gas conversion into hydrogen for fuel cells at the top of the list. In contrast the direct use of natural gas in hybrid cars is lower down the list in terms of efficiency, energy, and pollution. Biological methanol for use in fuel cell vehicles is way down the list despite biomethanol being a potentially renewable resource unlike natural gas. "It must be emphasised that no single chain comes out with the best score on all impact categories," the researchers say, "There are always some sorts of trade offs involved. Thus, there are no obvious winners; only good or bad trade offs between different impact categories."

Jim Corlett | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>