Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sealing fissures with water

23.04.2007
A special water mixture prevents sand from throwing a spanner in the oil production works. The mixture can also be used to seal tunnel wall fissures and stop erosion.

The method has been developed at the Norwegian University of Science and Technology (NTNU), and involves pumping water with various additives into the relevant area. It could be a well at a subsea oil field, or a tunnel wall. These additives are environmentally-friendly, inorganic components and a chemical catalyst.

”The system consists of two solutions – one carbonate source and one calcium source – which are mixed half and half. Gradually, over 24 hours, calcite – limestone – precipitates from the mixture,” explains the man behind the method, Professor Terje Østvold at the Department of Materials Science and Engineering.

This limestone will seal fissures in rocks and bind grains of sand.

Calcite is a type of calcium carbonate. Calcium carbonate is highly insoluble in water – which is wonderfully demonstrated by the magnificent formations in stalactite caves.

More oil

Oil fields are depleted gradually, which results in lower pressure. To recover more oil, the producers pump in water to increase the pressure. This method has a significant problem attached to it: In many reservoirs, the water will transport sand into the production plant. The solution currently being used to minimize the problem is mechanical: Some sort of grid is placed in front of the drill pipe exit to prevent sand from entering, but it is not particularly effective.

”Gradually, the amount of sand makes the recovery impossible and unprofitable. New wells must be drilled, but that could be so expensive that recovering the remaining oil does not pay off," says Professor Østvold.

However, when Østvold’s chemical water mixture enters the oil reservoir, calcium carbonate crystals will come between the grains of sand and bind them together. That makes the sand unable to move. The oil may flow through the sand without bringing it into the pipe.

Sealing leakages

The water mixture can also be used to seal tunnels more efficiently and environmentally-friendly than today.

”The current method involves injecting concrete into fissures in the rock while working the tunnels. The carbonate and calcium water is a lot more liquid than concrete. By injecting this mixture into the rock wall on the inside of the tunnel, the calcium carbonate crystals will fill the narrow, water-bearing fissures in the rock and seal them," says Professor Østvold.

“It is too soon to say whether the new method will be less expensive than the current one, but it is definitely a possibility,” claims Østvold.

The Norwegian Public Roads Administration is particularly interested in the discovery, and recently invited the researchers from NTNU to test the method in the Eiksund tunnel in Møre.

”It worked perfectly,” confirms Professor Østvold. ”We achieved a leakage reduction of more than eighty per cent.”

Binding the soil

It appears that this method could also be used to reduce soil erosion caused by wind and water. Soil erosion is an enormous global problem.

”It turns out that soil can be stabilized in the same way as sand, with environmentally-friendly minerals that also function as fertilizers. If we water the soil in autumn with water containing chemicals and a catalyst, we may produce minerals that bind the soil particles together. That way we may protect the soil from erosion while waiting for the next growth period,” says Professor Østvold.

Patent

Østvold has developed the new method in cooperation with the spin-off firm Impermeable AS that he established a few years ago. Together with research fellows and students at NTNU and the University of Patras, Greece, he further developed the method.

He says that commercial actors are planning to test the method at oil fields in the North Sea. The worldwide engineering company M-I provides technology services for oil companies all over the world. Its Norwegian subsidiary M-I Production Chemicals is genuinely interested in adopting the method, and Østvold has also met with British Petroleum in London for the same reason.

By Tore Oksholen

Nina Tveter | alfa
Further information:
http://www.ntnu.no

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>