Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find 'large is smart' when it comes to cities

17.04.2007
Cities are considered by many to be a blessing and a curse. Large cities generate considerable wealth, they are home to many high paying jobs and are seen as engines of innovation. But cities also generate pollution, crime and poor social structures that lead to the urban blight that plagues their very existence.

Now a team of researchers, including an economist from Arizona State University, have studied the growth of cities in different parts of the world and have come up with general equations that can foretell their consumption of resources and their contributions to society. The work has debunked the notion that cities act like biological organisms, that once they start they grow, and consume and contribute at predictable linear rates.

"It's true that large cities have more problems, they are more congested, they create more pollution and they have more crime," said Jose Lobo, and ASU economist in the School of Sustainability. "But also because of their size, cities are more innovative and create more wealth. Large cities are the source of their problems and they are the source of the solutions to their problems."

The researchers working with Lobo -- Luis Bettencourt of Los Alamos National Laboratory, Los Alamos, New Mex.; Dirk Helbing and Christian Kuhnert of Dresden University of Technology, Germany; and Geoffrey West of the Santa Fe Institute, Santa Fe, New Mex. -- detailed their findings in the article "Growth, innovation, scaling and the pace of life in cities," in the current issue of the Proceedings of the National Academy of Sciences. An on-line version of the article was published on April 16, 2007 (www.pnas.org).

"Humanity has just crossed a major landmark in its history with the majority of people now living in cities," the researchers state. "The inexorable trend toward urbanization worldwide presents an urgent challenge for predictive, quantitative theory of urban organization and sustainable development."

This will require thinking about cities in new ways, they add.

The old way of thinking about cities is as if they are an organism, which consumes resources and grows in size. Oftentimes, cities are referred to as its own ecosystem and many use the metaphor of it acting like a biological organism, Lobo said. But the team found that this was a false metaphor.

"The one thing that we know about organisms whether it be elephants or sharks or frogs, is that as they get large, they slow down," Lobo said. "They use less energy, they don't move as fast. That is a very important point for biological scaling."

"In the case of cities, it is actually the opposite," he added. "As cities get larger they create more wealth and they are more innovative at a faster rate. There is no counterpart to that in biology."

In fact, Lobo said, the larger the city the greater return on investment.

The researchers base their findings on data on the growth of cities (large urban areas) in the U.S., Europe and China over the past 150 years. They measured cities consumption of resources, (such as water usage), requirements for infrastructure (roads, transportation, lengths of electrical cable) and then measured the creative output of these areas (patents issued, "super creative jobs" generated, R&D employment, total wages). The size of the cities were determined by population.

What they found were some general correlations of size and resource consumption that more or less fit the biological organism metaphor, meaning as the city grew in size it required less energy (resources) to sustain it in a proportion called sublinear scaling. What was surprising to the team was when they measured creative output (jobs, wealth generated, innovation) as cities grew, the scaling of this output was not sublinear, but superlinear, meaning as the city grew its creative output grew faster and faster.

"It isn't like if you double the size of a city you double its creative output," Lobo said. "The increase you get in wealth creation is greater than the increase in size of the city."

That ratio can range from 1.13:1 when measuring the gross domestic product in Germany, to 1.34:1 when measuring private R&D employment in the U.S.

"We are not saying that any large city is assured of prosperity forever, but if you look at the collection of cities, large cities have managed to out run their problems," Lobo added. "Large is smart."

All of this points to the need of rethinking large cities, both in how they are managed and what they contribute to the greater good. This is especially true today, as cities are on the brink explosive growth. Today a little more than half of the world's population live in large urban areas. By 2030, it is estimated to be two-thirds of the world's population will be living in urban areas.

"Cities are really one of the most important innovations in humans history," Lobo said. "We need to think of them as being very human entities and as engines of creation. We need a different perspective about cities, one that is away from thinking of large cities as a source of problems but as possible sources of solutions."

"The practical application of this work is that the problem is not large cities, the problem is the conditions in which some of the people live in large cities," Lobo added. "Policies should be directed to making large cities more livable not making them smaller."

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>