Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overfishing great sharks wiped out North Carolina bay scallop fishery

02.04.2007
Fewer big sharks in the oceans led to the destruction of North Carolina’s bay scallop fishery and inhibits the recovery of depressed scallop, oyster and clam populations along the U.S. Atlantic Coast, according to an article in the March 30 issue of the journal Science.

A team of Canadian and American ecologists, led by world-renowned fisheries biologist Ransom Myers of Dalhousie University in Halifax, Nova Scotia, has found that overfishing in the Atlantic of the largest predatory sharks, such as the bull, great white, dusky and hammerhead sharks, has led to an explosion of their ray, skate and small shark prey species.

"With fewer sharks around, the species they prey upon – like cownose rays – have increased in numbers, and in turn, hordes of cownose rays dining on bay scallops have wiped the scallops out," said co-author Julia Baum of Dalhousie.

"This ecological event is having a large impact on local communities that depend so much on healthy fisheries," said Charles Peterson, a professor of marine sciences biology and ecology at the Institute of Marine Sciences at the University of North Carolina at Chapel Hill and co-leader of the study.

In 2003, Myers and Baum published a study in Science that showed rapid declines in the great sharks of the northwest Atlantic since the mid-1980s. In the new study, funded by the Pew Institute for Ocean Science, the research team examined a dozen different research surveys from 1970-2005 along the eastern U.S. coast and found that their original study underestimated the declines: scalloped hammerhead and tiger sharks may have declined by more than 97 percent; bull, dusky and smooth hammerhead sharks by more than 99 percent.

"The extent of the declines shouldn’t be a surprise considering how heavily large sharks have been fished in recent decades to meet the growing worldwide demand for shark fins and meat," Baum said.

Sharks are targeted in numerous fisheries, and they also are snagged as bycatch in fisheries targeting tunas and swordfish in both U.S. and high-seas fisheries. As many as 73 million sharks are killed worldwide each year for the finning trade, and the number is escalating rapidly.

With an average population increase of about 8 percent per year, the East Coast cownose ray population may now number as many as 40 million. The rays, which can grow to be more than 4 feet across, eat large quantities of bivalves, including bay scallops, oysters, soft-shell and hard clams in the bays and estuaries they frequent during summer and migrate through during fall and spring.

In the early 1980s Peterson sampled bay scallops in North Carolina sounds in late summer before and after the cownose rays passed through and found that most scallops survived the ray predation, allowing the scallop population to support a fishery and still replenish itself each year. In contrast, sampling in recent years by Peterson and co-author Sean Powers of the University of South Alabama and the Dauphin Island Sea Lab – after the cownose ray population explosion – showed that the migrating rays consumed nearly all adult bay scallops in the area, except those protected inside fences that the researchers had put up to keep the rays out. By 2004, cownose rays had completely devastated the scallop population, terminating North Carolina’s century-old bay scallop fishery.

"Increased predation by cownose rays also may inhibit recovery of oysters and clams from the effects of overexploitation, disease, habitat destruction and pollution, which already have depressed these species," said Peterson, noting shellfish declines in areas occupied by cownose rays and examples of stable or growing shellfish populations in areas beyond the ray’s northernmost limit.

Ecologists have long predicted that the demise of top predators could trigger destructive consequences. Researching such effects, however, has been a challenge.

"This is the first published field experiment to demonstrate that the loss of sharks is cascading through ocean ecosystems and inflicting collateral damage on food fisheries such as scallops," said Ellen Pikitch, executive director of the Pew Institute for Ocean Science and a professor at the University of Miami Rosenstiel School of Marine and Atmospheric Science. "These unforeseen and devastating impacts underscore the need to take a more holistic ecosystem-based approach to fisheries management."

"Maintaining the populations of top predators is critical for sustaining healthy oceanic ecosystems," said Peterson. "Despite the vastness of the oceans, its organisms are interconnected, meaning that changes at one level have implications several steps removed. Through our work, the ocean is not so unfathomable, and we know better now why sharks matter."

Solutions to the problem, Baum said, "include enhancing protection of great sharks by substantially reducing fishing pressure on all of the shark species and enforcing bans on shark finning both in national waters and on the high seas."

Clinton Colmenares | EurekAlert!
Further information:
http://www.globalshark.ca
http://www.pewoceanscience.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>