Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfossils unravel climate history of tropical Africa

26.03.2007
Scientists from the NIOZ Royal Netherlands Institute for Sea Research obtained for the first time a detailed temperature record for tropical central Africa over the past 25,000 years.

They did this in cooperation with a German colleague from the University of Bremen. The scientists developed an entirely new method to reconstruct the history of land temperatures based on the molecular fossils of soil bacteria.

They applied the method to a marine sediment core taken in the outflow of the Congo River. This core contained eroded land material and microfossils from marine algae. The results show that the land environment of tropical Africa was cooled more than the adjacent Atlantic Ocean during the last ice-age.

This large temperature difference between land and ocean surface resulted in drier conditions compared to the current situation, which favours the growth of a lush rainforest. These findings provide further insight in natural variations in climate and the possible consequences of a warming earth on precipitation in central Africa. The results will be published in this week's issue of 'Science'.

One of the techniques currently used to estimate past sea surface temperatures, is based on organic molecules from algae growing in the surface layer of the Ocean. These organisms adapt the molecular composition of their cell membranes to ambient temperature to maintain constant physiological properties. When such molecules sink to the sea floor and are buried in sediments where oxygen does not penetrate, they can be preserved for thousands of years. The ratios between the different molecules from the algal cell membrane can be used to approximate the past temperature of the sea surface. These techniques are therefore called 'proxies'.

New method to measure soil temperatures

Reconstructing continental temperature history is more difficult than for the oceans, because soils on the continent do not form a continuous archive but are often eroded. The researchers developed an entirely new proxy for the annual mean air temperature on land, based on molecules from the cell membrane of soil inhabiting bacteria. They analysed eroded soil material in a sediment core in the outflow area of the river Congo in the South Atlantic Ocean at a depth of almost 1000m. Since the Congo River drains a large part of tropical central Africa, the land derived material gives an integrated signal for a very large area.

Cool tropical Africa

The new proxy was used in this sediment core to obtain both a continental and a sea surface temperature record. A comparison of both records shows that ocean surface and land temperatures behaved differently during the past 25,000 years. During the last ice age, temperatures over tropical Africa were 21°C, about 4°C lower than today, whereas the tropical Atlantic Ocean was only about 2.5°C colder. By comparing this temperature difference with existing records of continental rainfall variability, lead author Johan Weijers and his colleagues concluded that the land-sea temperature difference has by far the largest influence on continental rainfall. This can be explained by the strong relationship of air pressure to temperature. When the temperature of the sea surface is higher than that of the continent, stronger offshore winds reduce the flow of moist sea air onto the African continent. This occurred during the last ice age and, as a consequence, the land climate in tropical Africa was drier than it is in today's world, where it favours the growth of a lush rainforest. These results provide further insight into the natural variation of climate and the possible consequences of a warming earth on precipitation in central Africa.

This research project was funded by the division of Earth and Life Sciences of the Netherlands Organisation for Scientific Research (NWO-ALW).

Jan Boon | alfa
Further information:
http://www.nioz.nl
http://www.nwo.nl/nwohome.nsf/pages/NWOA_6ZKCZR_Eng

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>