Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First ozone and nitrogen dioxide measurements from MetOp-A

15.03.2007
The Global Ozone Monitoring Experiment-2 (GOME-2) on board MetOp-A launched in October 2006 and currently undergoing commissioning has delivered the first geophysical products for monitoring the Earth's ozone layer, and European and global air quality.

This marks the start of a long-term European commitment to monitor the recovery of the ozone layer and to support the monitoring and forecasting of air quality, both for European citizens and at a global level. The products have been developed by the German Aerospace Center (DLR) in partnership with EUMETSAT’s Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF), which is coordinated by the Finnish Meteorological Institute (FMI). The O3M SAF generates, validates, archives and distributes atmospheric ozone, trace gases, aerosols and surface-ultraviolet radiation data products using measurements from MetOp-A.

GOME-2, a scanning spectrometer, follows on from successful GOME flown on ESA’s ERS-2 satellite launched in April 1995, and provides near-global coverage on a daily basis. The instrument measures profiles of atmospheric ozone and the distribution of other trace gases in the atmosphere. The instrument measures profiles of atmospheric ozone and the distribution of other trace gases in the atmosphere that are related to the depletion of ozone in the stratosphere, and to natural and anthropogenic sources of pollution.

The amount of surface ultraviolet radiation is also derived from GOME-2 measurements. The ozone layer at an altitude of 20-30 kilometres shields the Earth from harmful ultra-violet radiation. However, the depletion of this protective ozone layer, which is most noticeable over the Arctic and Antarctic regions, is of particular environmental concern. The resulting increased levels of ultraviolet radiation reaching the surface of the Earth can cause serious damage to human health, agriculture, forests and water ecosystems. High levels of atmospheric pollutants such as nitrogen dioxide produced by fossil fuel combustion, can damage respiratory health and contribute to acid deposition which harms soil and vegetation.

Global Ozone

The first image above shows total ozone in the atmosphere as measured by the GOME-2 instrument on 11 January 2007 during one day of successive orbits of MetOp-A. This picture illustrates the large variability within the ozone layer, with ozone-rich air at the northern mid-latitudes and smaller levels of ozone over the (sub)-tropical region. GOME-2 monitors the ozone layer amount from day to day on a global basis, and will track the evolution of the ozone-hole above Antarctica during austral spring.

Regional Nitrogen dioxide

The image shows total nitrogen dioxide in the atmosphere over Europe on 4 February 2007, as measured by the GOME-2 instrument on MetOp-A. Nitrogen dioxide is one of the most important contributors to air pollution. With the GOME-2 instrument, nitrogen dioxide can be measured worldwide on a daily basis, and at a city-size scale. Clearly visible in this picture are high tropospheric nitrogen dioxide concentrations over large urban and industrial areas of Europe. Note that the pollution patterns seen on a daily basis are also affected by the prevailing weather conditions and the resulting movement of clean and polluted air.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMXQCQ08ZE_economy_0.html

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>