Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M study proves pollution from China And India affecting world's weather

07.03.2007
Severe pollution from the Far East is almost certainly affecting the weather near you, says a Texas A&M University researcher who has studied the problem and has published a landmark paper on the topic in the Proceedings of the National Academy of Sciences.

Renyi Zhang, professor of atmospheric sciences at Texas A&M and lead author of the paper, says the study is the first of its kind that provides indisputable evidence that man-made pollution is adversely affecting the storm track over the Pacific Ocean, a major weather event in the northern hemisphere during winter. The project was funded by the National Science Foundation and NASA.

Zhang says the culprit is easy to detect: pollution from industrial and power plants in China and India. Both countries have seen huge increases in their economies, which means more large factories and power plants to sustain such growth. All of these emit immense quantities of pollution – much of it soot and sulfate aerosols – into the atmosphere, which is carried by the prevailing winds over the Pacific Ocean and eventually worldwide.

Using satellite imagery and computer models, Zhang says that in roughly the last 20 years or so, the amount of deep convective clouds in this area increased from 20 to 50 percent, suggesting an intensified storm track in the Pacific.

"This pollution directly affects our weather," he explains.

"During the past few decades, there has been a dramatic increase in atmospheric aerosols – mostly sulfate and soot from coal burning – especially in China and India," he explains.

"We compared these deep convective clouds from the 10-year period of 1984-1994 to the period from 1994-2005 and discovered these storms have risen anywhere from 20 to as high as 50 percent."

"It is a direct link from large-scale storm systems to anthropogenic (human-made) pollution."

Zhang says the problem is especially worse during the winter months.

Because of various climate conditions, the northern Pacific Ocean is more susceptible to the aerosol effect in winter. Aerosols can affect the droplets in clouds and can actually change the dynamics of the clouds themselves, Zhang adds.

The Pacific storm track carries these polluted particles to the west coasts of Canada and the United States, across America and eventually, most of the world, Zhang notes.

"The Pacific storm track can impact weather all over the globe," he says.

"The general air flow is from west to east, but there is also some serious concern that the polar regions could be affected by this pollution. That could have potentially catastrophic results."

Soot, in the form of black carbon, can collect on ice packs and attract more heat from the sun, meaning a potential acceleration of melting of the polar ice caps, he believes.

"It possibly means the polar ice caps could melt quicker than we had believed, which of course, results in rising sea level rates," he adds.

The pollution from the storm tracks could also signify wild weather changes, he believes.

"You might have more storms, and these storms might be more severe than usual," he says.

"Or it could lead to the opposite – severe droughts in other areas. The Pacific storm track plays a crucial role in our weather, and there is no doubt at all that human activity is changing the world's weather."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>