Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Texas A&M study proves pollution from China And India affecting world's weather

Severe pollution from the Far East is almost certainly affecting the weather near you, says a Texas A&M University researcher who has studied the problem and has published a landmark paper on the topic in the Proceedings of the National Academy of Sciences.

Renyi Zhang, professor of atmospheric sciences at Texas A&M and lead author of the paper, says the study is the first of its kind that provides indisputable evidence that man-made pollution is adversely affecting the storm track over the Pacific Ocean, a major weather event in the northern hemisphere during winter. The project was funded by the National Science Foundation and NASA.

Zhang says the culprit is easy to detect: pollution from industrial and power plants in China and India. Both countries have seen huge increases in their economies, which means more large factories and power plants to sustain such growth. All of these emit immense quantities of pollution – much of it soot and sulfate aerosols – into the atmosphere, which is carried by the prevailing winds over the Pacific Ocean and eventually worldwide.

Using satellite imagery and computer models, Zhang says that in roughly the last 20 years or so, the amount of deep convective clouds in this area increased from 20 to 50 percent, suggesting an intensified storm track in the Pacific.

"This pollution directly affects our weather," he explains.

"During the past few decades, there has been a dramatic increase in atmospheric aerosols – mostly sulfate and soot from coal burning – especially in China and India," he explains.

"We compared these deep convective clouds from the 10-year period of 1984-1994 to the period from 1994-2005 and discovered these storms have risen anywhere from 20 to as high as 50 percent."

"It is a direct link from large-scale storm systems to anthropogenic (human-made) pollution."

Zhang says the problem is especially worse during the winter months.

Because of various climate conditions, the northern Pacific Ocean is more susceptible to the aerosol effect in winter. Aerosols can affect the droplets in clouds and can actually change the dynamics of the clouds themselves, Zhang adds.

The Pacific storm track carries these polluted particles to the west coasts of Canada and the United States, across America and eventually, most of the world, Zhang notes.

"The Pacific storm track can impact weather all over the globe," he says.

"The general air flow is from west to east, but there is also some serious concern that the polar regions could be affected by this pollution. That could have potentially catastrophic results."

Soot, in the form of black carbon, can collect on ice packs and attract more heat from the sun, meaning a potential acceleration of melting of the polar ice caps, he believes.

"It possibly means the polar ice caps could melt quicker than we had believed, which of course, results in rising sea level rates," he adds.

The pollution from the storm tracks could also signify wild weather changes, he believes.

"You might have more storms, and these storms might be more severe than usual," he says.

"Or it could lead to the opposite – severe droughts in other areas. The Pacific storm track plays a crucial role in our weather, and there is no doubt at all that human activity is changing the world's weather."

Keith Randall | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>