Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M study proves pollution from China And India affecting world's weather

07.03.2007
Severe pollution from the Far East is almost certainly affecting the weather near you, says a Texas A&M University researcher who has studied the problem and has published a landmark paper on the topic in the Proceedings of the National Academy of Sciences.

Renyi Zhang, professor of atmospheric sciences at Texas A&M and lead author of the paper, says the study is the first of its kind that provides indisputable evidence that man-made pollution is adversely affecting the storm track over the Pacific Ocean, a major weather event in the northern hemisphere during winter. The project was funded by the National Science Foundation and NASA.

Zhang says the culprit is easy to detect: pollution from industrial and power plants in China and India. Both countries have seen huge increases in their economies, which means more large factories and power plants to sustain such growth. All of these emit immense quantities of pollution – much of it soot and sulfate aerosols – into the atmosphere, which is carried by the prevailing winds over the Pacific Ocean and eventually worldwide.

Using satellite imagery and computer models, Zhang says that in roughly the last 20 years or so, the amount of deep convective clouds in this area increased from 20 to 50 percent, suggesting an intensified storm track in the Pacific.

"This pollution directly affects our weather," he explains.

"During the past few decades, there has been a dramatic increase in atmospheric aerosols – mostly sulfate and soot from coal burning – especially in China and India," he explains.

"We compared these deep convective clouds from the 10-year period of 1984-1994 to the period from 1994-2005 and discovered these storms have risen anywhere from 20 to as high as 50 percent."

"It is a direct link from large-scale storm systems to anthropogenic (human-made) pollution."

Zhang says the problem is especially worse during the winter months.

Because of various climate conditions, the northern Pacific Ocean is more susceptible to the aerosol effect in winter. Aerosols can affect the droplets in clouds and can actually change the dynamics of the clouds themselves, Zhang adds.

The Pacific storm track carries these polluted particles to the west coasts of Canada and the United States, across America and eventually, most of the world, Zhang notes.

"The Pacific storm track can impact weather all over the globe," he says.

"The general air flow is from west to east, but there is also some serious concern that the polar regions could be affected by this pollution. That could have potentially catastrophic results."

Soot, in the form of black carbon, can collect on ice packs and attract more heat from the sun, meaning a potential acceleration of melting of the polar ice caps, he believes.

"It possibly means the polar ice caps could melt quicker than we had believed, which of course, results in rising sea level rates," he adds.

The pollution from the storm tracks could also signify wild weather changes, he believes.

"You might have more storms, and these storms might be more severe than usual," he says.

"Or it could lead to the opposite – severe droughts in other areas. The Pacific storm track plays a crucial role in our weather, and there is no doubt at all that human activity is changing the world's weather."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>