Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tundra disappearing at rapid rate

07.03.2007
Forests of spruce trees and shrubs in parts of northern Canada are taking over what were once tundra landscapes--forcing out the species that lived there.

This shift can happen at a much faster speed than scientists originally thought, according to a new University of Alberta study that adds to the growing body of evidence on the effects of climate change.

The boundary, or treeline, between forest and tundra ecosystems is a prominent landscape feature in both Arctic and mountain environments. As global temperatures continue to increase, the treeline is expected to advance but the new research shows that this shift will not always occur gradually but can surge ahead.

"The conventional thinking on treeline dynamics has been that advances are very slow because conditions are so harsh at these high latitudes and altitudes," said Dr. Ryan Danby, from the Department of Biological Sciences. "But what our data indicates is that there was an upslope surge of trees in response to warmer temperatures. It’s like it waited until conditions were just right and then it decided to get up and run, not just walk."

Danby and Dr. David Hik, also from the Faculty of Science, reconstructed changes in the density and altitude of treeline forests in southwestern Yukon over the past 300 years. Using tree rings, they were able to date the year of establishment and death of spruce trees and reconstruct changes in treeline vegetation. The study is published in the "Journal of Ecology."

They found that a rapid change in response to climate warming during the early mid 20th century was observed at all locations. Treeline advanced considerably—as much as 85 metres elevation—on warm, south-facing slopes and tree density increased significantly—as much as 65 per cent—on cooler, north-facing slopes.

"The mechanism of change appears to be associated with occasional years of extraordinarily high seed production—triggered by hot, dry summers—followed by successive years of warm temperatures favourable for seedling growth and survival," said Danby.

Widespread changes to treelines could have significant impacts, says Danby. As tundra habitats are lost and fragmented, species and habitats are forced to move upwards as well. "The problem is that in mountainous areas you can only go so high so they get forced into smaller and smaller areas," said Danby.

These changes are of particular importance in these northern regions where First Nation people still rely heavily on the land, says Danby. Tundra species like caribou and sheep populations, which are important parts of that lifestyle, have declined across southwestern Yukon. As treeline advance, the reflectance of the land surface declines because coniferous trees absorb more sunlight than the tundra. This light energy is then re-emitted to the atmosphere as heat. This sets up a "positive feedback," the same process that is associated with the rapidly decaying Arctic ice cap.

"These results are very relevant to the current debate surrounding climate change because they provide real evidence that vegetation change will be quite considerable in response to future warming, potentially transforming tundra landscapes into open spruce woodlands," said Danby, who will also be participating in an International Polar Year project that will be examining treeline dynamics across the circumpolar north.

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>