Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT engineer works toward clean water, more

06.03.2007
--Global partnerships key to solving humanitarian problems

An MIT engineer working toward clean drinking water in Nepal describes in a recent issue of the Journal of International Development how people from developed and developing countries can work together to solve key humanitarian problems, ultimately meeting the basic human needs for security, broadly defined.

Such a collaboration "begins with a relationship among partners in the global village, taking into consideration the specific conditions of the local culture, environment and location," said Susan Murcott, a senior lecturer in MIT's Department of Civil and Environmental Engineering (CEE).

Murcott has personal experience of a global engineering partnership of this kind--she calls it "co-evolutionary engineering design"-through her work in developing countries.

She and students in MIT's CEE master of engineering program have worked for years with citizens of Nepal and, since 2005, of Ghana, to design, test and distribute inexpensive household water filters that simultaneously remove arsenic and microbial contamination from the available water supply. Murcott notes that some 150 million people worldwide are affected by arsenic-tainted water, while an estimated 1 to 5 billion people worldwide lack access to microbially safe water.

As of December 2006, more than 5,000 such filters are operating across Nepal, serving some 40,000 people. An additional 5,000 filters are slated for sales and distribution in 2007 in Nepal, with further outreach into Vietnam, Cambodia and Bangladesh underway.

"The students and I are trying to make a positive contribution to people's lives and to improve our collective chances of development and security," said Murcott.

With co-evolutionary design, technical designers from developed countries become partners with the user communities, who are experts in their local conditions. With the MIT Nepal Water Project, Murcott points out, "Our team's partners have included university-educated people and illiterate peasant farmers. We have identified a common need-safe, clean drinking water for all-and we have worked together successfully for seven years so far."

Any system to provide clean water should consider factors such as sustainability, green engineering and World Health Organization guidelines. In addition, the system must meet the requirements of the local women who typically haul and store water, as well as being affordable to people earning one dollar a day. The same general principles also apply to other co-evolutionary design projects.

Murcott is currently focusing her energies in the northern region of Ghana, thanks to a two-year grant from the Conrad N. Hilton Foundation. Here, a social enterprise-"Pure Home Water," initiated by Murcott with Ghanian partners-is marketing ceramic water filters in one of the poorest regions of Ghana, where cholera, typhoid, guinea worm and other waterborne diseases are rampant. Two Ghanaian social entrepreneurs, together with MIT engineering and Sloan School of Management students, hope to spread ceramic filters to reach more than a million people in northern Ghana in the coming years.

Murcott is also leading MIT teams to Nicaragua, Haiti, Peru and Kenya to address water and sanitation issues in those countries.

She concludes, "We hope to increase awareness of health and safe water issues among the least educated people in remote areas of Nepal and Ghana, subsidize filters for the very poorest people, insure that locally made units are built correctly, and make sure that future teams will effectively and passionately carry the work forward.

"We are confident that this work provides a model of engaged, cross-cultural cooperation that builds self-reliant solutions, at the same time providing a renewed understanding that security for most people in the world relates not to armed conflict but to 'common good' social, environmental and economic challenges, for example, the simple need for safe water."

The Murcott team's efforts have been honored with several awards, including a Wall Street Journal Innovation Technology Award (environment category) and the World Bank Development Marketplace Competition.

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>