Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSIRO imagery shows outer Great Barrier Reef at risk from river plumes

01.03.2007
A stunning series of satellite imagery of Australia’s Great Barrier Reef released by the CSIRO shows for the first time visual confirmation of the theory that sediment plumes travel to the outer reef, and beyond.

The remotely sensed images, taken from February 9 to 13 this year, challenge conventional thought that sediment travelling from our river systems into the GBR is captured by the longshore current and travels no more than 10 to 15km offshore, affecting only the inner Great Barrier Reef Lagoon and the inner reef corals.

Images captured by CSIRO show large plumes of terrestrial material following unconventional patterns and travelling quite fast as far as 65 to 130km, to the outer reef and, in some instances, travelling along the outer reef and re-entering the reef.

The plumes are the result of heavy rainfalls in northern QLD around late January to early February 2007, with the resulting flood waters carrying a larger sediment load than during regular rainfall and river flow. As such floods have not occurred for a while the accumulated material in the creeks ands rivers coupled with increased sediment runoff from the land is causing a significant transport of terrestrial material to all areas of the affected reefs and reef waters.

“While extreme coastal events have been captured by remote sensing before, this is the first time they can be seen and analysed straight after the event as there are now more satellites imaging the Earth and CSIRO has invested in fast information delivery systems.”Managers of the GBR have long been examining the effects of run-off of sediments, including pesticides, herbicides and fertilizers, on the reef corals.

The images challenge the traditional school of hydrological modelling, which says sediment plume movement in the mid to northern GBR usually go north and never directly flow to the outer reef is spared the direct effects of such river floods.

“A re-think is needed now that we know where flood plumes go,” says CSIRO scientist Arnold Dekker, ”and what this means as organic micropollutants may be travelling to parts of the reef scientists hadn’t thought to look before.”

The images were taken from NASA’s MODIS satellite by GeoScience Australia’s Alice Springs site for a new product being developed by the Wealth from Oceans Flagship to track coastal and ocean events in real-time, building on the technology behind the successful SENTINEL [external link] bushfire tracking system.

While extreme coastal events have been captured by remote sensing before, this is the first time they can be seen and analysed straight after the event as there are now more satellites imaging the Earth and CSIRO has invested in fast information delivery systems.

Leane Regan | EurekAlert!
Further information:
http://www.csiro.au

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>