Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwest Atlantic Ocean ecosystems experiencing large climate-related changes

26.02.2007
Research shows links between collapse of fisheries and bottom-living species

Ecosystems along the continental shelf waters of the Northwest Atlantic Ocean--from the Labrador Sea south of Greenland all the way to North Carolina--are experiencing large, rapid changes, report oceanographers funded by the National Science Foundation (NSF) in the Feb. 23, 2007, issue of the journal Science.

While some scientists have pointed to the decline of cod from overfishing as the main reason for the shifting ecosystems, the paper emphasizes that climate change is also playing a big role.

"It is becoming increasingly clear that Northwest Atlantic ecosystems are being affected by climate forcing from the bottom up and overfishing from the top down," said Charles Greene, an oceanographer at Cornell University in Ithaca, N.Y, and lead author of the Science paper. "Predicting the fate of these ecosystems will be one of oceanography's grand challenges for the 21st century."

Most scientists believe humans are warming the planet by burning fossil fuels and changing land surfaces. Early signs of this warming have appeared in the Arctic. Since the late 1980s, scientists have noticed that pulses of fresh water from increased precipitation and melting of ice on land and sea in the Arctic have flowed into the North Atlantic Ocean and made the water less salty.

At the same time, climate-driven shifts in Arctic wind patterns have redirected ocean currents. The combination of these processes has led to a freshening of the seawater along the North Atlantic shelf.

"Long time-series measurements, as well as research on large-scale ocean processes, are the key to improving our understanding of ecosystem shifts," says Mary Elena-Carr, program director in NSF's biological oceanography program. "This study brings together the important components: the atmosphere, freshwater flow, changes in currents and biological responses, all necessary to predicting future ecosystem responses to climate change."

Under normal conditions in summer months a warmer, less salty layer of water floats on the surface (warmer, less salty water is also less dense and lighter). This surface layer is known as a "mixed" layer, because wind-driven turbulence mixes the water and creates a uniform temperature, salinity and density to depths that can range from 25 to 200 meters.

Similar to the flow of heating and cooling wax in a lava lamp, when the air temperature cools during autumn, temperature and density differences lessen between the surface mixed layer and the cooler, saltier waters below. As the density differences get smaller, mixing between the layers typically increases and the surface mixed layer deepens.

But Greene cites recent scientific studies that reveal the influx of fresh water from Arctic climate change is keeping the mixed layer buoyant, inhibiting its rapid deepening during autumn. A gradual rather than rapid deepening of the mixed layer has impacted the seasonal cycles of phytoplankton (tiny floating plants), zooplankton (tiny animals like copepods) and fish populations that live near the surface.

Normally, when the mixed layer deepens rapidly during autumn, phytoplankton numbers decline because they spend less time near the surface where they are exposed to the light necessary for growth. But with the mixed layer remaining relatively shallow, phytoplankton populations stay abundant throughout the fall. In turn, zooplankton that feed on phytoplankton have increased in number during the fall through the early winter. Herring populations also rose during the 1990s, which some scientists suspect may be because of more abundant zooplankton to feed on.

Greene's paper also cites a link between the collapse of cod fisheries in the early 1990s and an increase in bottom-living species such as snow crabs and shrimp, which cod prey upon. Without cod, other animals that live in the water column and feed on zooplankton, including herring, may have increased.

While the herring story is still unclear, the authors contend that the crash of cod populations does not explain why phytoplankton and zooplankton populations at the base of the food chain have risen during autumn.

"We suggest that, with or without the collapse of cod, a bottom-up, climate-driven regime shift would have taken place in the Northwest Atlantic during the 1990s," Greene said.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>