Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate, cod collapse, have combined to cause rapid North Atlantic ecosystem changes

26.02.2007
Ecosystems along the continental shelf waters of the Northwest Atlantic Ocean, from the Labrador Sea south of Greenland all the way to North Carolina, are experiencing large, rapid changes, reports a Cornell oceanographer in the Feb. 23 issue of Science.

While some scientists have pointed to the decline of cod from overfishing as the main reason for the shifting ecosystems, the article emphasizes that climate changes are also playing a big role.

"It is becoming increasingly clear that Northwest Atlantic shelf ecosystems are being tested by climate forcing from the bottom up and overfishing from the top down," said Charles Greene, director of the Ocean Resources and Ecosystems Program in Cornell's Department of Earth and Atmospheric Sciences. "Predicting the fate of these ecosystems will be one of oceanography's grand challenges for the 21st century."

Most scientists believe the planet is being warmed by greenhouse gases emitted in the burning of fossil fuels, and by changing land surfaces. Early signs of this warming have appeared in the Arctic: Since the late 1980s, scientists have noticed that pulses of fresh water from increased precipitation and melting of ice on land and sea in the Arctic have flowed into the North Atlantic Ocean and made the water less salty.

At the same time, climate-driven shifts in Arctic wind patterns have redirected ocean currents. The combination of these processes has led to a freshening of seawater along most of the Northwest Atlantic shelf.

In the past, during summer months, a wind-mixed layer of warmer, less salty water (which is less dense and lighter) floated on the ocean surface. When the air temperature cooled during autumn, temperature and density differences lessened between the surface mixed layer and the cooler, saltier waters below. Similar to the flow of heating and cooling wax in a lava lamp, as the density differences became smaller, mixing between the layers typically increased and the surface mixed layer deepened.

But, Greene cites recent scientific studies that reveal the influx of fresh water from Arctic climate change is keeping the surface mixed layer relatively shallow, curbing its rapid deepening during autumn. A gradual rather than rapid deepening of the surface mixed layer has led to changes in the seasonal cycles of phytoplankton (tiny free-floating plants like algae), zooplankton (tiny free-floating animals like copepods) and fish populations that live near the surface, according to the report.

Without the fall deepening of the surface mixed layer, phytoplankton populations have continued access to daylight needed for growth, and their numbers have stayed abundant throughout the fall. In turn, zooplankton, which feed on the phytoplankton, have increased in number during the fall through the early winter. Herring populations also rose during the 1990s, which some scientists suspect may be because of the abundance of zooplankton to feed on.

At the same time, Greene's article cites how the collapse of the cod populations in the early 1990s has led to increases in bottom-living species such as snow crab and shrimp that cod feed on. Without cod preying on them, other animals that live in the water column and feed on zooplankton, including herring, may have increased in numbers. But, while the story with herring is still unclear, the authors contend that the crash of cod populations does not fully explain why phytoplankton and zooplankton populations at the base of the food chain have risen during autumn.

"We suggest that, with or without the collapse of cod, a bottom-up, climate driven regime shift would have taken place in the Northwest Atlantic during the 1990s," Greene said.

Andrew Pershing, an oceanographer who recently moved from Cornell to the University of Maine and Gulf of Maine Research Institute, co-authored the article.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>