Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate, cod collapse, have combined to cause rapid North Atlantic ecosystem changes

26.02.2007
Ecosystems along the continental shelf waters of the Northwest Atlantic Ocean, from the Labrador Sea south of Greenland all the way to North Carolina, are experiencing large, rapid changes, reports a Cornell oceanographer in the Feb. 23 issue of Science.

While some scientists have pointed to the decline of cod from overfishing as the main reason for the shifting ecosystems, the article emphasizes that climate changes are also playing a big role.

"It is becoming increasingly clear that Northwest Atlantic shelf ecosystems are being tested by climate forcing from the bottom up and overfishing from the top down," said Charles Greene, director of the Ocean Resources and Ecosystems Program in Cornell's Department of Earth and Atmospheric Sciences. "Predicting the fate of these ecosystems will be one of oceanography's grand challenges for the 21st century."

Most scientists believe the planet is being warmed by greenhouse gases emitted in the burning of fossil fuels, and by changing land surfaces. Early signs of this warming have appeared in the Arctic: Since the late 1980s, scientists have noticed that pulses of fresh water from increased precipitation and melting of ice on land and sea in the Arctic have flowed into the North Atlantic Ocean and made the water less salty.

At the same time, climate-driven shifts in Arctic wind patterns have redirected ocean currents. The combination of these processes has led to a freshening of seawater along most of the Northwest Atlantic shelf.

In the past, during summer months, a wind-mixed layer of warmer, less salty water (which is less dense and lighter) floated on the ocean surface. When the air temperature cooled during autumn, temperature and density differences lessened between the surface mixed layer and the cooler, saltier waters below. Similar to the flow of heating and cooling wax in a lava lamp, as the density differences became smaller, mixing between the layers typically increased and the surface mixed layer deepened.

But, Greene cites recent scientific studies that reveal the influx of fresh water from Arctic climate change is keeping the surface mixed layer relatively shallow, curbing its rapid deepening during autumn. A gradual rather than rapid deepening of the surface mixed layer has led to changes in the seasonal cycles of phytoplankton (tiny free-floating plants like algae), zooplankton (tiny free-floating animals like copepods) and fish populations that live near the surface, according to the report.

Without the fall deepening of the surface mixed layer, phytoplankton populations have continued access to daylight needed for growth, and their numbers have stayed abundant throughout the fall. In turn, zooplankton, which feed on the phytoplankton, have increased in number during the fall through the early winter. Herring populations also rose during the 1990s, which some scientists suspect may be because of the abundance of zooplankton to feed on.

At the same time, Greene's article cites how the collapse of the cod populations in the early 1990s has led to increases in bottom-living species such as snow crab and shrimp that cod feed on. Without cod preying on them, other animals that live in the water column and feed on zooplankton, including herring, may have increased in numbers. But, while the story with herring is still unclear, the authors contend that the crash of cod populations does not fully explain why phytoplankton and zooplankton populations at the base of the food chain have risen during autumn.

"We suggest that, with or without the collapse of cod, a bottom-up, climate driven regime shift would have taken place in the Northwest Atlantic during the 1990s," Greene said.

Andrew Pershing, an oceanographer who recently moved from Cornell to the University of Maine and Gulf of Maine Research Institute, co-authored the article.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>