Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Warming climate, cod collapse, have combined to cause rapid North Atlantic ecosystem changes

Ecosystems along the continental shelf waters of the Northwest Atlantic Ocean, from the Labrador Sea south of Greenland all the way to North Carolina, are experiencing large, rapid changes, reports a Cornell oceanographer in the Feb. 23 issue of Science.

While some scientists have pointed to the decline of cod from overfishing as the main reason for the shifting ecosystems, the article emphasizes that climate changes are also playing a big role.

"It is becoming increasingly clear that Northwest Atlantic shelf ecosystems are being tested by climate forcing from the bottom up and overfishing from the top down," said Charles Greene, director of the Ocean Resources and Ecosystems Program in Cornell's Department of Earth and Atmospheric Sciences. "Predicting the fate of these ecosystems will be one of oceanography's grand challenges for the 21st century."

Most scientists believe the planet is being warmed by greenhouse gases emitted in the burning of fossil fuels, and by changing land surfaces. Early signs of this warming have appeared in the Arctic: Since the late 1980s, scientists have noticed that pulses of fresh water from increased precipitation and melting of ice on land and sea in the Arctic have flowed into the North Atlantic Ocean and made the water less salty.

At the same time, climate-driven shifts in Arctic wind patterns have redirected ocean currents. The combination of these processes has led to a freshening of seawater along most of the Northwest Atlantic shelf.

In the past, during summer months, a wind-mixed layer of warmer, less salty water (which is less dense and lighter) floated on the ocean surface. When the air temperature cooled during autumn, temperature and density differences lessened between the surface mixed layer and the cooler, saltier waters below. Similar to the flow of heating and cooling wax in a lava lamp, as the density differences became smaller, mixing between the layers typically increased and the surface mixed layer deepened.

But, Greene cites recent scientific studies that reveal the influx of fresh water from Arctic climate change is keeping the surface mixed layer relatively shallow, curbing its rapid deepening during autumn. A gradual rather than rapid deepening of the surface mixed layer has led to changes in the seasonal cycles of phytoplankton (tiny free-floating plants like algae), zooplankton (tiny free-floating animals like copepods) and fish populations that live near the surface, according to the report.

Without the fall deepening of the surface mixed layer, phytoplankton populations have continued access to daylight needed for growth, and their numbers have stayed abundant throughout the fall. In turn, zooplankton, which feed on the phytoplankton, have increased in number during the fall through the early winter. Herring populations also rose during the 1990s, which some scientists suspect may be because of the abundance of zooplankton to feed on.

At the same time, Greene's article cites how the collapse of the cod populations in the early 1990s has led to increases in bottom-living species such as snow crab and shrimp that cod feed on. Without cod preying on them, other animals that live in the water column and feed on zooplankton, including herring, may have increased in numbers. But, while the story with herring is still unclear, the authors contend that the crash of cod populations does not fully explain why phytoplankton and zooplankton populations at the base of the food chain have risen during autumn.

"We suggest that, with or without the collapse of cod, a bottom-up, climate driven regime shift would have taken place in the Northwest Atlantic during the 1990s," Greene said.

Andrew Pershing, an oceanographer who recently moved from Cornell to the University of Maine and Gulf of Maine Research Institute, co-authored the article.

Press Relations Office | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>