Worldwide research network needed to really understand what is changing in the Arctic

“This is basically a plan to better understand how the Arctic is changing, but doing it in a new systematic, international and ‘pan-Arctic' way,” explained Berry Lyons, professor in the School of Earth Sciences and director of the Byrd Polar Research Center at Ohio State University.

Lyons chaired a 18-member National Academy of Sciences committee that last year that submitted a report, “Toward an Integrated Arctic Observing Network,” outlining their proposal.

“The Arctic is much more than just the oceans there. It is the land, the peoples, the atmospheric and biological components that constantly interact with one another at the top of the world,” he said.

“It also includes, perhaps, the most understudied of the world's oceans, partly because of the logistics it requires to work there and the ice cover that blankets it for much of the year.”

Lyons said that the idea of linking together research on the land, the ocean, the atmosphere and the human dimensions and examining it all as a system is the key goal of establishing an Arctic Observing Network (AON).

“We're trying to understand how the Arctic system is responding, not just to climate change – although that is a major reason – but also to environmental changes in general,” he said.

The fact that most of the Arctic research that has been done to date has been segregated by academic discipline has limited the kind of cooperation that an AON would offer, Lyons said.

“This is an opportunity to get people from different scientific disciplines together and to start thinking about the Arctic as a larger, interconnected system. That's the new part of this.”

The committee envisioned a computerized portal through which scholars could access a wealth of data across many scientific fields and from many countries, all housed and managed in a way that would foster collaborations and new insights.

Lyons points to some large data sets that are readily at hand — information gained from a Long-Range Ecological Research (LTER) sites at Bonanza Creek and Toolik Lake, Alaska; from research at the Summit of Greenland's ice cap, and from the Abisko Scientific Research Station in Sweden, as examples. AON would build from these already existing networks and observational platforms, he said.

“People have been collecting data at these locations for a long time and they could add immensely to the AON,” he said. “We know that the Arctic is changing dramatically but there are important things that we just don't know.

“A lot of the gauging stations on rivers in the Arctic, particularly in the former Soviet Union, have been taken down. We don't know what is going on environmentally in great detail in Siberia. And we don't know what impacts these changes might be having on indigenous people in this region.

“Because of the small number of operating buoys, we know little about the change of water throughout the Arctic,” he said. “There are certain measurements that aren't being made at all that are really, really important.”

The committee's report was “a roadmap to really learn how the Arctic is changing. We need to do this in a much more organized manner than is being done right now,” he said.

Lyons also said that aside from the current AON activity in the U.S. through the National Science Foundation, there is also international movement underway on the Sustained Arctic Observing Network (SAON) through the Arctic Council.

Media Contact

Berry Lyons EurekAlert!

More Information:

http://www.osu.edu

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors