Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham scientist fights climate change

16.02.2007
A University of Nottingham scientist has won a Royal Society award for his innovative work to combat climate change.

Dr George Chen received the prestigious award at a ceremony in London to recognise scientists who are helping to put the UK at the forefront of the battle against global warming.

His pioneering work, which is developing ways of taking carbon dioxide (CO2) out of the atmosphere, could play a key role in future efforts to reduce global climate change. His research could also reduce the need to store highly pressurised CO2 underground.

Carbon abatement technologies, including carbon capture, storage and long-term utilisation of CO2, will play a vital role in revolutionising energy use worldwide. The University of Nottingham has a broad range of internationally-recognised research programmes in this field, and launched the Energy Technologies Research Institute in November 2006 to bring together top academics and industrial partners.

The award made to Dr Chen was part of the Royal Society’s ‘Labs to Riches’ event, which encourages innovation in science and technology and promotes its commercial application.

Dr Chen, of The University of Nottingham’s School of Chemical, Environmental and Mining Engineering, said: “It is a great honour for me to receive this prestigious award from the Royal Society.

“I see this award as an authoritative recognition of our research in CO2 mitigation. It has certainly stimulated my whole research group at Nottingham and we are really looking forward to demonstrating the feasibility of this approach.”

The awards were made at a gala dinner at the Royal Society’s headquarters in London on February 15, presented by Sir David Wallace, Vice President and Treasurer of the Royal Society.

Dr Chen won the Brian Mercer Award for Feasibility, which is given to allow researchers to investigate the technical and economic feasibility of commercialising an aspect of their scientific research. The awards were established by a generous bequest from the late Brian Mercer OBE FRS.

The accumulation in the Earth’s atmosphere of ‘greenhouse gases’ such as CO2 is widely blamed for global warming. Greenhouse gases, generated by the burning of fossil fuels and other human activities, are so-called because they trap more of the Sun’s heat — leading to the temperature increases associated with climate change.

Martin Rees, President of the Royal Society, said: “Tackling global warming is not only a moral imperative but it is also an economic one.

“Britain has some of the best scientists in the world and we need to make the most of them. All of the award winners have the potential to change how we live and to make a serious contribution to the UK’s economy.”

The Royal Society is an independent academy promoting the natural and applied sciences. Founded in 1660, its objectives are to strengthen UK science by providing support to excellent individuals, and to fund excellent research that pushes back the frontiers of knowledge.

Other winners of this year’s awards include UK scientists developing research into more efficient solar energy production, and a team looking at a removal and recycling system which consumes less than five per cent of conventional processes.

Tim Utton | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>