Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham scientist fights climate change

16.02.2007
A University of Nottingham scientist has won a Royal Society award for his innovative work to combat climate change.

Dr George Chen received the prestigious award at a ceremony in London to recognise scientists who are helping to put the UK at the forefront of the battle against global warming.

His pioneering work, which is developing ways of taking carbon dioxide (CO2) out of the atmosphere, could play a key role in future efforts to reduce global climate change. His research could also reduce the need to store highly pressurised CO2 underground.

Carbon abatement technologies, including carbon capture, storage and long-term utilisation of CO2, will play a vital role in revolutionising energy use worldwide. The University of Nottingham has a broad range of internationally-recognised research programmes in this field, and launched the Energy Technologies Research Institute in November 2006 to bring together top academics and industrial partners.

The award made to Dr Chen was part of the Royal Society’s ‘Labs to Riches’ event, which encourages innovation in science and technology and promotes its commercial application.

Dr Chen, of The University of Nottingham’s School of Chemical, Environmental and Mining Engineering, said: “It is a great honour for me to receive this prestigious award from the Royal Society.

“I see this award as an authoritative recognition of our research in CO2 mitigation. It has certainly stimulated my whole research group at Nottingham and we are really looking forward to demonstrating the feasibility of this approach.”

The awards were made at a gala dinner at the Royal Society’s headquarters in London on February 15, presented by Sir David Wallace, Vice President and Treasurer of the Royal Society.

Dr Chen won the Brian Mercer Award for Feasibility, which is given to allow researchers to investigate the technical and economic feasibility of commercialising an aspect of their scientific research. The awards were established by a generous bequest from the late Brian Mercer OBE FRS.

The accumulation in the Earth’s atmosphere of ‘greenhouse gases’ such as CO2 is widely blamed for global warming. Greenhouse gases, generated by the burning of fossil fuels and other human activities, are so-called because they trap more of the Sun’s heat — leading to the temperature increases associated with climate change.

Martin Rees, President of the Royal Society, said: “Tackling global warming is not only a moral imperative but it is also an economic one.

“Britain has some of the best scientists in the world and we need to make the most of them. All of the award winners have the potential to change how we live and to make a serious contribution to the UK’s economy.”

The Royal Society is an independent academy promoting the natural and applied sciences. Founded in 1660, its objectives are to strengthen UK science by providing support to excellent individuals, and to fund excellent research that pushes back the frontiers of knowledge.

Other winners of this year’s awards include UK scientists developing research into more efficient solar energy production, and a team looking at a removal and recycling system which consumes less than five per cent of conventional processes.

Tim Utton | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>