Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale biologists 'trick' viruses into extinction

13.02.2007
While human changes to the environment cause conservation biologists to worry about species extinction, Yale biologists are reversing the logic by trying to trap viruses in habitats that force their extinction, according to a report in Ecology Letters.

To avoid going extinct a population must not only survive, but also reproduce. Paul Turner, associate professor of ecology and evolutionary biology at Yale, tested the practicality of luring a virus population into the wrong cells within the human body, thus preventing virus reproduction and alleviating disease.

"Ecological traps for viruses might arise naturally, or could be engineered by adding viral binding sites to cells that disallow virus reproduction," said senior author Turner. "We proved the concept using a non-human virus, and variants of the bacteria cells it infects."

In ecology, a habitat that supports population growth is termed a "source," whereas a non-supportive habitat is a "sink." This study reported on the success of phi-6 virus populations in environments containing different mixtures of ordinary "source" bacteria and mutant trap cells that act as "sinks."

Their research showed that when the number of trap cells exceeded a key threshold in the mixtures, the virus population could no longer sustain itself and declined toward extinction.

"This approach has intriguing potential for new treatments against human viruses," said Turner. "A similar idea already exists in agriculture, where farmers use non-harvested 'trap crops' to lure insect pests. Because the pests prefer the taste of the trap crops, only these plants need to be sprayed, reducing the amount of pesticide use."

Turner believes that similar trickery might be used against human viruses like HIV. He notes that HIV recognizes the T-cells it infects by CD4 molecules on the cell surface, but it then requires functions of the cell nucleus to reproduce. Current anti-HIV therapies are designed to maintain high T-cell counts in the human body, so that the immune system can properly function. But, these drugs therapies are very expensive.

Turner suggests, "A cheaper option is the possibility of engineering trap cells that have CD4 molecules on their surface, but no nucleus for virus reproduction. Mature red blood cells could fill the bill, because they lack a nucleus and could be engineered as sink habitats that greatly outnumber the T-cell source habitats in the body."

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>