Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Good vibrations' from deep-sea smokers may keep fish out of hot water

07.02.2007
So you're a fish.

Right now some tubeworm tartare and clams on the half shell would really hit the spot, so you're headed for the all-night café. "All-night" being the operative word because the volcanic ridge you're tooling along is nearly 1.5 miles below the surface. The term "where the sun don't shine" perfectly describes the place. It's pitch black. Darn, but what's that loud rumbling up ahead? Must be one of those pesky black smokers. Some of those babies can fry your face off. A detour is highly indicated.

The long-held assumption that black smokers are silent is wrong, according to recently published research led by Timothy Crone, a University of Washington doctoral student in oceanography. It's prompting scientists to wonder: Could the sound and vibrations of black smokers be the reason fish in total darkness avoid being poached by waters as hot as 750 F? And might similar sounds guide them to the smorgasbord of tube worms, mussels, shrimp, snails and other fauna at vents with more temperate waters?

Want to be the first on your block to hear what a black smoker sounds like? Go to http://uwnews.org/article.asp?articleID=30030 where audio of a black smoker has been combined with a video into a short movie.

The research was reported online during the inaugural month of the Public Library of Sciences' interactive journal, PLoS ONE. Aimed at involving more people in science, published results are available without a subscription and can include a wealth of audio, video and other materials.

Hydrothermal vents, discovered in the 1970s, are found along volcanically active ridges where seawater seeps into the seafloor, picks up heat and minerals and then vents back into the ocean depths. The hottest and most vigorous of the vents are black smokers, so called because when the fluids they emit hit the icy cold seawater, minerals in the fluids precipitate out and it looks just like dark, billowing smoke.

Because of a paper published 15 years ago, it had been thought the vents were probably playing only the sounds of silence. Still a number of scientists suspected that the vents could be generating sounds, given the obvious turbulence of the flows, Crone says.

It was decided that new recordings should be attempted because Crone and other oceanographers are looking for new ways to measure vent flows, which are a source of heat and minerals in the world's oceans that scientists would like to understand better. Commonly used instruments to measure flow are often short lived when inserted in the superheated, corrosive black-smoker fluids.

How much simpler if the vents were generating some kind of sound that could be recorded and correlated to flows, Crone says.

With funding from two organizations that help take fields of research and instrumentation in new directions, the UW Royalty Research Fund and the W.M. Keck Foundation, a deep-sea digital acoustic recording system was deployed in the Main Endeavour vent field. The field is on the seafloor about 300 miles west of Seattle on the Juan de Fuca Ridge. Crone recorded 45 hours of sound at the vent scientists call "Sully" and 136 hours at the vent called "Puffer."

That's the sound of Sully you're hearing as the video runs. Crone likens the sound to the rumbling of an avalanche or a forest fire.

How loud would it be if you were sitting a foot away? (That's something you couldn't actually do because the pressure where most black smokers are found is so intense that you'd implode.) The sound level would be somewhere between conversational speech and a hairdryer, Crone says.

Four possible mechanisms might be causing -- or contributing to -- the noise, the researchers say. For example, the flow could be pulsating or its volume could be changing as its waters cool. Dissimilar fluids in the flow could generate noise where they mix. Or the fluids rushing through the nooks and crannies of the smoker vent itself could be creating noise.

The sounds also appear to change as flows change in reaction to such things as the Earth's tides, the authors say. Read the full report on PLoS ONE at http://dx.doi.org/10.1371/journal.pone.0000133. professor at Lamont-Doherty Earth Observatory, Columbia University; and Jeffrey Parsons, formerly a UW faculty member, now with Herrera Environmental Consultants.

Buried within the broad range of sounds that produce the rumbling, Crone's analysis revealed the surprise that the vents also produce resonant tones. There could be a number of things generating such tones. For example, flows along the cavities and bumps inside the vent structures may cause tones in the same way jug band members produce sound by blowing across the mouths of their jugs, causing the air inside the jug to resonate and produce a deep tone.

Both Sully and Puffer produce resonant tones at several different frequencies that we can't discern with all the other noise generated by the vents. But you can hear examples of tones that Crone pulled out from the racket by listening at http://uwnews.org/article.asp?articleID=30030.

"With these resonant tones, each vent within the vent field is likely to have its own unique acoustic signature," Crone says.

If so, and if fish are actually using vent sounds to navigate, then the distinctive tones might be how fish find their way back to cooler vents where the eats have been particularly good.

In that case, being on top of old smoky -- all covered in sounds -- would be a good thing indeed.

Sandra Hines | EurekAlert!
Further information:
http://www.plosone.org/
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>