Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic, Luminescent Nanoparticles Set New Standard

29.01.2007
Researchers at UC Davis have created a new type of nanoparticles that could be used in tests for environmental pollution or contamination of food products, and for medical diagnostics.

The particles, about 100 to 200 nanometers in size, are luminescent, magnetic and inexpensive to make, and can be tagged with antibodies. They are made up of a magnetic core of iron oxide or iron/neodymium/cobalt oxide coated in a shell of europium and gadolinium oxide. When stimulated with a laser, europium emits red light at a very specific wavelength.

The nanoparticles can be manipulated with magnets and detected by fluorescence. They could also be labeled with other fluorescent labels in different colors, or used as part of an assay with other fluorescent labels. The built-in europium luminescence acts as an internal standard, making it easier to carry out accurate quantitative assays, said Ian Kennedy, professor of mechanical and aeronautical engineering and senior author on a paper describing the work.

The particles can also be coated with short pieces of DNA and used for genetic analysis. The team is exploring uses including testing for bioterrorism agents such as ricin or botulinum toxin in food and for genetic tests in cancer medicine.

The nanoparticles were made by spray pyrolysis, which involves mixing the raw material in a solvent and spraying it through a flame. The method is much cheaper than the techniques previously used for making similar particles, and can readily be scaled up to industrial production. It is already used in the chemical industry to make products such as fumed silica and carbon black.

Other authors on the paper are research specialist Dosi Dosev, Department of Mechanical and Aeronautical Engineering; postdoctoral researcher Mikaela Nichkova, research associate Shirley Gee and Professor Bruce Hammock, all of the Department of Entomology; and physics graduate student Randy Dumas and Kai Liu, associate professor of physics.

The researchers are establishing a company, Synthia LLC, to develop the technology further.

The paper is published online in the journal Nanotechnology and will appear in the Feb. 7, 2007, print issue of the journal. The work was funded primarily by the National Science Foundation and the Superfund Basic Research Program of the National Institute of Environmental Health Sciences.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>