Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What the Siberian forest is breathing

25.01.2007
This summer, not far from the Yenisei, the construction of an enormous 300m mast is being completed. A research laboratory will be located in an underground bunker beneath the mast, which is literally crammed full of the most state-of-the-art scientific equipment.

This was required by the scientists to be able to thoroughly investigate who or, more precisely, what is to answer for the greenhouse effect, from where oxygen, carbon dioxide and certain other gases are taken in the Earth’s atmosphere, what portion of the carbon dioxide can be absorbed by the Siberian bogs and forests and a mass of other questions which may at first sight appear to be trivial.

A truly amazing design is being constructed under a partner project between the International Science and Technology Centre and the Krasnoyarsk Sukachev Institute of the Forest SB RAS. The project is called "Response of Biogeochemical Cycles to Climate Change in Eurasia"and it will be accomplished by Russian researchers in cooperation with their German colleagues - specialists of the Institute of Biogeochemistry (Jena) and the Institute for Chemistry (Mainz). Both these institutes are a part of Europe’s largest scientific community, named after Max Planck.

However, the mast in itself is not unique. A twin-mast has been installed in Germany and it facilitates similar research, only not in forestland, like this Siberian one does, but in a region of exceptionally highly developed industry and agriculture. But together they will indeed provide a unique opportunity to compare the composition of the atmosphere in regions with fundamentally different anthropogenic load and ascertain how and due to what the composition changes. As a result, the atmospheric composition can be analyzed, or more precisely – the concentration within it of the most important gases (from the point of view of this research) at different altitudes, right up to 300 meters. Here it will be possible to study not simply the chemical but also the isotopic composition. And this will be the key to reveal the contribution of anthropogenic and natural components in the overall gaseous exchange flow in the atmosphere.

Project Manager Sergei Verkhovets explained in the most general terms why it was necessary to build a tower of such a height and how the isotopic composition of gases will help to determine their origin.

Measurements of CO2 concentrations at a height of 200 to 300 meters above the earth’s surface allow us to investigate the relatively homogeneous part of atmosphere, the so-called mixed layer. With that we can study the processes taking place over a vast territory, avoiding the "noise" caused by daily changes in the photosynthesis process close to the surface of the Earth.

As far as the isotope ratio in CO2, CH4, CO and N2O, and the ratio of O2/N2 are concerned, they make it possible to distinguish various carbon emission- and sink processes - photosynthesis and respiration of the ground-based biosphere, burning of fossil combustibles, and atmospheric-oceanic exchange and absorption.

For example, plants not only absorb ??2 in the course of photosynthesis; they also emit it while breathing. So, the carbonic acid gas "expired" by plants is enriched by a lighter isotope 12?. And above the ocean, where gaseous exchange processes obey to a greater extent physical rather than biochemical laws, the difference in isotopic composition is substantially equalized. Thus, if two air samples are taken and ??2 is isolated from them, and the isotopic composition is determined, its origin can be determined. The isotopic trace (signature) of a fossil combustible is also well-known. Carbon monoxide (CO), in its turn, bears information about anthropogenic emissions, because one of its main sources is the incomplete burning of fossil combustibles. A change in the correlation of 18O/16O in atmospheric CO2 helps to evaluate and isolate the respiratory flow from photosynthesis in Siberia. Continuous measurements of C16O18O on the continents are needed to reveal the climatic influence on carbon sink. Methane observations will help us better understand the connection between the climate and the ecosystem: from change in the concentration of "regular" and "heavy" methane 14CH4, researchers can track the respiration of peat bogs and, perhaps, of permafrost soils as well.

The data obtained in the course of observations will be the basic data for the construction of carbonic balance models both at regional and continental levels.

This task is especially topical for Russia. Owing to the adoption of the Framework Convention and the Kyoto Protocol, a situation has arisen whereby Russia can not only contribute to researching global climate change, but it can also gain significant economic benefits. The protocol stipulates that carbon dioxide removal from the atmosphere by natural absorbent ecosystems is rated as fulfillment of emission reduction ratings. The forests of Siberia constitute one fifth of the entire forests of the world, in terms of area at least. However, we need to know exactly what their capacity is in terms of an atmospheric carbon absorber. This project will make it possible to obtain data of this kind.

Andrew Vakhliaev | alfa
Further information:
http://tech-db.istc.ru/ISTC/sc.nsf/events/siberian-forest

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>