Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae toxin identification unravels fish-kill mystery

23.01.2007
A team of researchers from the Hollings Marine Laboratory in Charleston, S.C., has uncovered a subtle chemical pathway by which a normally inoffensive algae, Pfiesteria piscicida, can suddenly start producing a lethal toxin.

The discovery, reported last week in Environmental Science and Technology,* could resolve a long-standing mystery surrounding occasional mass fish kills on the East Coast.

Pfiesteria has been implicated for years in a series of otherwise unexplained episodes of mass fish death throughout its range from roughly Delaware to Alabama, particularly in the Neuse River in North Carolina and the Chesapeake Bay. The single-cell organism can experience explosive growth resulting in algae blooms in coastal waters. While it has been suspected not only in fish kills but in incidents of human memory loss and other environmental and health-related effects, no one has ever conclusively identified the actual mechanism.

Attempts to grow lethal Pfiesteria in the laboratory have had inconsistent results.

The Hollings Marine Laboratory is a joint institution of the National Oceanic and Atmospheric Administration (NOAA), the National Institute of Standards and Technology (NIST), the South Carolina Department of Natural Resources, the College of Charleston, and the Medical University of South Carolina (MUSC). Lead researcher Peter Moeller of NOAA suspected that the presence or absence of heavy metals might be the missing factor accounting for Pfiesteria's lethality, and put together a multidisciplinary research team to identify the actual toxin and the conditions under which it is produced.

The work was complicated by the fact that the suspect toxin turns out to be highly unstable, decomposing rapidly once it's activated. Chemists from NIST and MUSC used an array of advanced spectroscopic techniques to determine that the toxin is characterized by the presence of copper-sulfur complexes. "NIST saved the day," Moeller said, "because we were working with only microgram and submicrogram quantities of the toxin. To not only determine that a metal was indeed present but even tell us which one really broke things open."

With that lead, Moeller's team established that the Pfiesteria cell can produce a copper-containing exotoxin--a toxin produced external to the cell itself--possibly as a mechanism to protect itself from copper in the environment. When exposed to sunlight or other environmental factors that can destabilize it, the toxin rapidly breaks down into short-lived free radicals, highly reactive chemical species believed to be the actual lethal agents. To observe the entire chain of events requires just the right combination of copper ions, temperature, light and Pfiesteria, explaining the difficulty researchers have had in reproducing the effect according to Moeller.

Although exotoxins like that produced by Pfiesteria are not common, the researchers observe, a number of other microalgae species are known to produce them, and under the right conditions in metal-rich waters they also might produce lethal variants.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>