Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae toxin identification unravels fish-kill mystery

23.01.2007
A team of researchers from the Hollings Marine Laboratory in Charleston, S.C., has uncovered a subtle chemical pathway by which a normally inoffensive algae, Pfiesteria piscicida, can suddenly start producing a lethal toxin.

The discovery, reported last week in Environmental Science and Technology,* could resolve a long-standing mystery surrounding occasional mass fish kills on the East Coast.

Pfiesteria has been implicated for years in a series of otherwise unexplained episodes of mass fish death throughout its range from roughly Delaware to Alabama, particularly in the Neuse River in North Carolina and the Chesapeake Bay. The single-cell organism can experience explosive growth resulting in algae blooms in coastal waters. While it has been suspected not only in fish kills but in incidents of human memory loss and other environmental and health-related effects, no one has ever conclusively identified the actual mechanism.

Attempts to grow lethal Pfiesteria in the laboratory have had inconsistent results.

The Hollings Marine Laboratory is a joint institution of the National Oceanic and Atmospheric Administration (NOAA), the National Institute of Standards and Technology (NIST), the South Carolina Department of Natural Resources, the College of Charleston, and the Medical University of South Carolina (MUSC). Lead researcher Peter Moeller of NOAA suspected that the presence or absence of heavy metals might be the missing factor accounting for Pfiesteria's lethality, and put together a multidisciplinary research team to identify the actual toxin and the conditions under which it is produced.

The work was complicated by the fact that the suspect toxin turns out to be highly unstable, decomposing rapidly once it's activated. Chemists from NIST and MUSC used an array of advanced spectroscopic techniques to determine that the toxin is characterized by the presence of copper-sulfur complexes. "NIST saved the day," Moeller said, "because we were working with only microgram and submicrogram quantities of the toxin. To not only determine that a metal was indeed present but even tell us which one really broke things open."

With that lead, Moeller's team established that the Pfiesteria cell can produce a copper-containing exotoxin--a toxin produced external to the cell itself--possibly as a mechanism to protect itself from copper in the environment. When exposed to sunlight or other environmental factors that can destabilize it, the toxin rapidly breaks down into short-lived free radicals, highly reactive chemical species believed to be the actual lethal agents. To observe the entire chain of events requires just the right combination of copper ions, temperature, light and Pfiesteria, explaining the difficulty researchers have had in reproducing the effect according to Moeller.

Although exotoxins like that produced by Pfiesteria are not common, the researchers observe, a number of other microalgae species are known to produce them, and under the right conditions in metal-rich waters they also might produce lethal variants.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>