Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Jekyll & Hyde” peat bogs turn up the heat

19.01.2007
“Air pollution makes peat bogs worsen global warming” claims Professor Chris Freeman, Royal Society Industry Fellow at Bangor University in an article published in the Proceedings of the National Academy of Sciences of the United States (PNAS).

We’re all used to the idea that rising levels of carbon dioxide (CO2) in the air are causing our climate to change. And we’re used to the idea that it’s our burning of oil, gas and coal that’s driving the process. But this new study shows that extra CO2 is getting into the atmosphere by a completely different route - and it’s all our own fault.

For thousands of years, peat bog plants have taken up carbon dioxide from the air and turned it into peat (part-decomposed plants) that can reach several meters in depth. This is clearly a “good process” because it helps to remove the CO2 we release by burning fossil fuels.

“But now there are signs that nitrogenous gases in air pollution can make peat bogs give off more carbon dioxide than they lock-up”

The amount of carbon contained in peat is not far off the total amount of carbon dioxide in the entire atmosphere by some estimates. The carbon is held in place by what Prof Freeman described in Nature recently as an “Enzymic latch”. In this, special chemicals called “phenolics” are produced by peat-bog plants that can stop plants decomposing after they’ve died. “They’re a bit like preservatives in food” explained Prof Freeman “only in this case they’re preserving huge stores of carbon in the form of peat, rather than food”.

The study in PNAS tells how a network of scientists led by Chris Freeman and his colleague Luca Bragazza from Italy, have studied samples taken from bogs all around Europe with varying levels of nitrogen in their rainfall. The results showed very clearly that bog plants growing in areas with higher levels of nitrogen form less phenolics. This is worrying because the less phenolics the plants produce, the weaker the enzymic latch becomes. This can ‘jump-start’ decomposition back into life and cause a ‘Jekyll and Hyde transition’ in the character of our bogs: Instead of being “good guys” - helping us by taking up our fossil fuel CO2 emissions, they become “bad guys” and start giving off even more carbon dioxide to the atmosphere than they take up.

Perhaps the most worrying aspect is that these results suggest that even if we managed to stop all further fossil fuel CO2 emissions (by switching to biofuels for example), atmospheric CO2 levels would continue to rise due to CO2 release from peat bogs.

Clearly putting an end to global warming is going to be more difficult than we thought. We need to address other aspects of air pollution too.

Elinor Elis-Williams | alfa
Further information:
http://www.bangor.ac.uk/news/full.php?Id=127

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>