Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Jekyll & Hyde” peat bogs turn up the heat

19.01.2007
“Air pollution makes peat bogs worsen global warming” claims Professor Chris Freeman, Royal Society Industry Fellow at Bangor University in an article published in the Proceedings of the National Academy of Sciences of the United States (PNAS).

We’re all used to the idea that rising levels of carbon dioxide (CO2) in the air are causing our climate to change. And we’re used to the idea that it’s our burning of oil, gas and coal that’s driving the process. But this new study shows that extra CO2 is getting into the atmosphere by a completely different route - and it’s all our own fault.

For thousands of years, peat bog plants have taken up carbon dioxide from the air and turned it into peat (part-decomposed plants) that can reach several meters in depth. This is clearly a “good process” because it helps to remove the CO2 we release by burning fossil fuels.

“But now there are signs that nitrogenous gases in air pollution can make peat bogs give off more carbon dioxide than they lock-up”

The amount of carbon contained in peat is not far off the total amount of carbon dioxide in the entire atmosphere by some estimates. The carbon is held in place by what Prof Freeman described in Nature recently as an “Enzymic latch”. In this, special chemicals called “phenolics” are produced by peat-bog plants that can stop plants decomposing after they’ve died. “They’re a bit like preservatives in food” explained Prof Freeman “only in this case they’re preserving huge stores of carbon in the form of peat, rather than food”.

The study in PNAS tells how a network of scientists led by Chris Freeman and his colleague Luca Bragazza from Italy, have studied samples taken from bogs all around Europe with varying levels of nitrogen in their rainfall. The results showed very clearly that bog plants growing in areas with higher levels of nitrogen form less phenolics. This is worrying because the less phenolics the plants produce, the weaker the enzymic latch becomes. This can ‘jump-start’ decomposition back into life and cause a ‘Jekyll and Hyde transition’ in the character of our bogs: Instead of being “good guys” - helping us by taking up our fossil fuel CO2 emissions, they become “bad guys” and start giving off even more carbon dioxide to the atmosphere than they take up.

Perhaps the most worrying aspect is that these results suggest that even if we managed to stop all further fossil fuel CO2 emissions (by switching to biofuels for example), atmospheric CO2 levels would continue to rise due to CO2 release from peat bogs.

Clearly putting an end to global warming is going to be more difficult than we thought. We need to address other aspects of air pollution too.

Elinor Elis-Williams | alfa
Further information:
http://www.bangor.ac.uk/news/full.php?Id=127

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>