Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Jekyll & Hyde” peat bogs turn up the heat

19.01.2007
“Air pollution makes peat bogs worsen global warming” claims Professor Chris Freeman, Royal Society Industry Fellow at Bangor University in an article published in the Proceedings of the National Academy of Sciences of the United States (PNAS).

We’re all used to the idea that rising levels of carbon dioxide (CO2) in the air are causing our climate to change. And we’re used to the idea that it’s our burning of oil, gas and coal that’s driving the process. But this new study shows that extra CO2 is getting into the atmosphere by a completely different route - and it’s all our own fault.

For thousands of years, peat bog plants have taken up carbon dioxide from the air and turned it into peat (part-decomposed plants) that can reach several meters in depth. This is clearly a “good process” because it helps to remove the CO2 we release by burning fossil fuels.

“But now there are signs that nitrogenous gases in air pollution can make peat bogs give off more carbon dioxide than they lock-up”

The amount of carbon contained in peat is not far off the total amount of carbon dioxide in the entire atmosphere by some estimates. The carbon is held in place by what Prof Freeman described in Nature recently as an “Enzymic latch”. In this, special chemicals called “phenolics” are produced by peat-bog plants that can stop plants decomposing after they’ve died. “They’re a bit like preservatives in food” explained Prof Freeman “only in this case they’re preserving huge stores of carbon in the form of peat, rather than food”.

The study in PNAS tells how a network of scientists led by Chris Freeman and his colleague Luca Bragazza from Italy, have studied samples taken from bogs all around Europe with varying levels of nitrogen in their rainfall. The results showed very clearly that bog plants growing in areas with higher levels of nitrogen form less phenolics. This is worrying because the less phenolics the plants produce, the weaker the enzymic latch becomes. This can ‘jump-start’ decomposition back into life and cause a ‘Jekyll and Hyde transition’ in the character of our bogs: Instead of being “good guys” - helping us by taking up our fossil fuel CO2 emissions, they become “bad guys” and start giving off even more carbon dioxide to the atmosphere than they take up.

Perhaps the most worrying aspect is that these results suggest that even if we managed to stop all further fossil fuel CO2 emissions (by switching to biofuels for example), atmospheric CO2 levels would continue to rise due to CO2 release from peat bogs.

Clearly putting an end to global warming is going to be more difficult than we thought. We need to address other aspects of air pollution too.

Elinor Elis-Williams | alfa
Further information:
http://www.bangor.ac.uk/news/full.php?Id=127

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>