Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Soil nutrients shape tropical forests, large-scale study indicates

Tropical forests are among the most diverse plant communities on earth, and scientists have labored for decades to identify the ecological and evolutionary processes that created and maintain them. A key question is whether all tree species are equivalent in their use of resources – water, light and nutrients – or whether each species has its own niche.

A large-scale study by researchers at the University of Illinois at Urbana-Champaign and eight other institutions sheds some light on the issue. It indicates that nutrients in the soil can strongly influence the distribution of trees in tropical forests.

The finding, published this week in the Proceedings of the National Academy of Sciences, challenges the theory that at local scales tree distributions in a forest simply reflect patterns of seed dispersal, said James W. Dalling, a U. of I. professor of plant biology and a principal researcher on the study.

The study evaluated three sites: two lowland forests, in central Panama and eastern Ecuador, and a mountain forest in southern Colombia. The researchers plotted every tree and mapped the distribution of soil nutrients on a total of 100 hectares (247 acres) at the sites. The study included 1,400 tree species and more than 500,000 trees.

The researchers compared distribution maps of 10 essential plant nutrients in the soils to species maps of all trees more than 1 centimeter in diameter. Each of the sites was very different, but at each the researchers found evidence that soil composition significantly influenced where certain tree species grew: The spatial distributions of 36 to 51 percent of the tree species showed strong associations with soil nutrient distributions.

Prior to the study, the researchers had expected to see some influence of soil nutrients on forest composition, but the results were more pronounced than anticipated.

“The fact that up to half of the species are showing an association with one or more nutrients is quite remarkable,” Dalling said.

“Differences in nutrient requirements among trees may help explain how so many species can coexist.”

Although plants in temperate forests influence the soils around them (through the uptake of nutrients, decomposition of leaf litter on the forest floor and through root exudates), in tropical forests local neighborhoods contain so many species that the ability of individual species to influence soil properties is likely to be small.

“We interpret these plant-soil associations as directional responses of plants to variation in soil properties,” the researchers wrote.

The team also found that certain soil nutrients that previously had not been considered important to plant growth in tropical forests had measurable effects on species distributions.

At the site in Ecuador, calcium and magnesium had the strongest effects. In the Panamanian forest, boron and potassium were the most influential nutrients assayed. And in the Colombian mountain forest, potassium, phosphorous, iron and nitrogen, in that order, showed the strongest effects on the distribution of trees.

“There are all kinds of minerals out there that plants seem to be responding to that we didn’t think were likely to be important,” Dalling said. Further studies are needed, he said, to evaluate these influences in more detail.

The other principal investigators on the study are Robert John, a post-doctoral researcher in the U. of I. department of plant biology; Kyle E. Harms, Louisiana State University; Joseph B. Yavitt, Cornell University; and Robert F. Stallard of the U.S. Geological Survey.

Researchers on the study also are affiliated with Smithsonian Tropical Research Institute, Panama; the University of Georgia; Pontifical Catholic University of Ecuador; Instituto Alexander von Humboldt, Colombia; and the Field Museum of Natural History, Chicago.

Editor’s note: To reach James W. Dalling in Panama, call 011-507-314-9311; e-mail:

Diana Yates | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>