Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation degrades nuclear waste-containing materials faster than expected

12.01.2007
New method enlists NMR to test durability of mineral-based waste forms

Minerals intended to entrap nuclear waste for hundreds of thousands of years may be susceptible to structural breakdown within 1,400 years, a team from the University of Cambridge and the Pacific Northwest National Laboratory reported today (Jan. 11) in the journal Nature.

The new study used nuclear magnetic resonance, or NMR, to show that the effects of radiation from plutonium incorporated into the mineral zircon rapidly degrades the mineral's crystal structure.

This could lead to swelling, loss of physical strength and possible cracking of the mineral as soon as 210 years, well before the radioactivity had decayed to safe levels, said lead author and Cambridge earth scientist Ian Farnan.

According to current thinking, highly radioactive substances could be rendered less mobile by combining them, before disposal, with glass or with a synthetic mineral at a very high temperature to form a crystal.

However, the crystal structure can only hold the radioactive elements for so long. Inside the crystal radioactive decay occurs, and tiny atomic fragments called alpha particles shoot away from the decaying nucleus, which recoils like a rifle, with both types repeatedly blasting the structure until it breaks down.

This may increase the likelihood for radioactive materials to leak, although co-author William J. Weber, a fellow at the Department of Energy national laboratory in Richland, Wash., who made the samples used in the study, cautioned that this work did not address leakage, and researchers detected no cracking. Weber noted that the "amorphous," or structurally degraded, natural radiation-containing zircon can remain intact for millions of years and is one of the most durable materials on earth.

Some earth and materials scientists believe it is possible to create a structure that rebuilds itself after these "alpha events" so that it can contain the radioactive elements for much longer. The tests developed by the Cambridge and PNNL team would enable scientists to screen different mineral and synthetic forms for durability.

As well as making the storage of the waste safer, new storage methods guided by the NMR technique could offer significant savings for nations facing disposal of large amounts of radioactive material. Countries including the United States, Britain, France, Germany and Japan are all considering burying their nuclear waste stockpiles hundreds of meters beneath the earth's surface. Doing so necessitates selection of a site with sufficiently stringent geological features to withstand any potential leakage at a cost of billions of dollars. For example, there is an ongoing debate over the safety of the Yucca Mountain site in Nevada. A figure published in Science in 2005 put that project's cost at $57 billion.

"By working harder on the waste form before you started trying to engineer the repository or choose the site, you could make billions of dollars worth of savings and improve the overall safety," Farnan said.

"At the moment, we have very few methods of understanding how materials behave over the extremely long timescales we are talking about. Our new research is a step towards that.

"We would suggest that substantive efforts should be made to produce a waste form which is tougher and has a durability we are confident of, in a quantitative sense, before it is stored underground, and before anyone tried to engineer around it. This would have substantial benefits, particularly from a financial point of view."

PNNL senior scientist and nuclear magnetic resonance expert Herman Cho, who co-wrote the report, said: "When the samples were made in the 1980s, NMR was not in the thinking. NMR has enabled us to quantify and look at changes in the crystal structure as the radiation damage progresses.

"This method adds a valuable new perspective to research on radioactive waste forms. It has also raised the question: 'How adequate is our understanding of the long-term behavior of these materials?' Studies of other waste forms, such as glass, could benefit from this technique."

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>