Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine bacteria can create environmentally friendly energy source

11.01.2007
Bacteria in the world's oceans can efficiently exploit solar energy to grow, thanks to a unique light-capturing pigment.

This discovery was made by researchers at University of Kalmar in Sweden, in collaboration with researchers in Gothenburg, Sweden, and Spain. The findings are described in an article in the prestigious academic journal Nature.

"It was long thought that algae were the only organisms in the seas that could use sunlight to grow," says Jarone Pinhassi, a researcher in Marine Microbiology at Kalmar University College. These microscopic algae carry out the same process as green plants on land, namely, photosynthesis with the help of chlorophyll.

In 2000 scientists in the U.S. found for the first time that many marine bacteria have a gene in their DNA that codes for a new type of light-capturing pigment: proteorhodopsin. Proteorhodopsin is related to the pigment in the retina that enables humans to see colors. It should be possible for this pigment to enable marine bacteria to capture solar light to generate energy, but until now it had not been possible to confirm this hypothesis.

Last year researchers from Kalmar collected 20 marine bacteria from different ocean areas and mapped their genomes. Several of them proved to contain the pigment proteorhodopsin. This made it possible to run a series of experiments that clearly show that growth in bacteria with this pigment is stimulated by sunlight, because the pigment converts solar energy to energy for growth. In other words, the scientists had found a new type of bacterial photosynthesis that takes place in the seas.

It's easier to understand the importance of understanding new mechanisms in marine bacteria to making efficient use of solar energy if we consider the fact that one liter of natural sea water contains roughly a billion bacteria. The activity of these bacteria is of great importance to the carbon cycle, through, for example, the amount of carbon dioxide they produce, and also to how the solar energy that reaches the earth is channeled through the nutrition cycle.

"Bacteria in the surface water of the world's oceans swim in a sea of light," says Jarone Pinhassi. "And it is shouldn't be too surprising that evolution has favored microorganisms that can use this rich source of energy. This type of protein may also play a role in commercial and environmental perspectives, for the development of artificial photosynthesis for the environmentally friendly production of energy."

For more information, please contact:
Jarone Pinhassi, phone: +46 480-446212; cell phone: +46 70-3756318; e-mail: jarone.pinhassi@hik.se

Karin Alvelid | idw
Further information:
http://www.nature.com
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>