Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big-brained birds survive better in nature

10.01.2007
Birds with brains that are large in relation to their body size have a lower mortality rate than those with smaller brains, according to new research published in the journal Proceedings of the Royal Society B: Biological Sciences today.

The research provides the first evidence for what scientists describe as the ‘cognitive buffer’ hypothesis - the idea that having a large brain enables animals to have more flexible behaviours and survive environmental challenges.

This theory was first put forward to answer the puzzle surrounding why animals, including humans, would evolve a larger brain, given the ‘cost’ associated with developing and maintaining a larger brain.

The researchers compared the brain size, body mass and mortality rates in over 200 different species of birds from polar, temperate and tropical regions.

They found that birds with larger brains relative to their body size survived better in nature than birds with small brains. This may explain why, for example, birds with small relative brain sizes, such as pheasants, find it harder to avoid a moving car than those with larger brain size, such as magpies.

“The idea that large brains are associated with reduced mortality has never been scientifically tested,” said Dr Tamas Szekely from the Department of Biology & Biochemistry at the University of Bath.

“Birds are ideally suited for such a test, as they are one of the only groups of animals for which the relationship between large brains and enhanced behavioural response to ecological challenges is best understood.

“We have shown that species with larger brains relative to their body size experience lower mortality than species with smaller brains, supporting the general importance of the cognitive buffer hypothesis in the evolution of large brains.”

The researchers made allowances for factors which may have accounted for variations in mortality rates, such as migratory behaviour, competition for mates and chick behaviour.

“Our findings suggest that large-brained animals might be better prepared to cope with environmental challenges such as climate change and habitat destruction,” said Dr Szekely, who worked with researchers from the Autonomous University of Barcelona (Spain), Pannon University (Hungary) and McGill University (Canada) on the project.

“This is supported by other research which has shown that large-brained birds are more successful in colonising new regions and are better at surviving the changing seasons.”

The research was funded by grants from the Ministerio de Educación y Ciencia (Spain), the Natural Sciences and Engineering Research Council of Canada and the Hungarian Academy of Sciences.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/2007/1/10/bigbrainedbirds.html

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>