Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How trees manage water in arid environments

08.01.2007
Water scarcity is slowly becoming a fact of life in increasingly large areas.

The summer of 2006 was the second warmest in the continental United States since records began in 1895, according to the National Climatic Data Center. Moderate to extreme drought conditions were evident in about 40 percent of the country.

When Constance Brown moved from Arizona to Indiana two years ago, she was struck by a major difference: people in Indiana don't think about water every day the way people in Arizona do.

The difference shows up in many ways. In Arizona, Brown said, if you drop a piece of ice on the kitchen floor and ignore it, in a few minutes it will be gone -- melted and then evaporated. In Indiana, if you drop a piece of ice on the floor and ignore it, the water will just stay there until it's wiped up.

In Arizona, she said, if you need a particular garment on short notice and it's in the laundry, you can wash it by hand and hang it outside. It will be dry in 15 minutes. Not in Indiana.

In semi-arid environments such as the southwestern United States, humidity is so low that water is scarce to begin with and hard to hold onto when there is a rare cloudburst. Rain that collects in puddles is quickly sucked up by evaporation into the dry air. Most of the rest runs off before it can soak into the ground. Maintaining an adequate supply of water is a constant challenge, and water management is a top priority.

One way to make better use of scarce water resources would be to retain more of the water that falls during a heavy rain. To accomplish this, better understanding is needed about how water behaves in the environment. Brown, a micrometeorologist in the Atmospheric Science Program of Indiana University's Department of Geography, is one of the scientists working to provide this understanding. Her research is primarily funded by the National Science Foundation.

In a forthcoming paper in the Journal of Arid Environments, which is available on the Web at http://authors.elsevier.com/offprints/YJARE1769/

0dee34d6306f9059b870583e03a193bd, she reports the first results of a study designed to characterize the surface exchanges of water and carbon dioxide in a forest in the Santa Catalina Mountains near Tucson, Ariz. Mountain forests are an important source of water for the rest of such semi-arid regions, and these forests provide relatively isolated conditions where scientists can get a clearer picture of what is happening to the water that so many people depend on. In a desert region, such forests are found only at the tops of mountains because only there does precipitation exceed evaporation enough for forest vegetation to survive.

Understanding surface-atmosphere interactions is important to understanding a range of water resource phenomena including predictions about water supplies, Brown said. "This research seeks to characterize the explicit relationship between water availability and photosynthetic activities of the vegetation. This paper is the first step in that process, and it illustrates the seasonal characteristics of the forest vegetation-water relationship as observed during a three-year period during which there were extreme drought conditions in the semi-arid southwestern United States."

Brown's measurements showed that in this environment, there is a predominant, direct and immediate correspondence between water availability and photosynthetic activity of the vegetation. This is different from what happens in most coniferous forests, where the seasonal behavior of the trees is significantly influenced by temperature changes: the trees are largely dormant in winter and have a summer growing season. The mountain-top forest that she studied was in some ways the opposite.

"During the summer season before the heavy rains, when almost all the winter precipitation had been evaporated and the soil was extremely dry, the trees essentially closed down," she said. "This behavior suggests that the trees have little ability to access any moisture present in bedrock fractures. Because a late spring/early summer period without any rain is very common in southern Arizona, the mountain forest must have evolved the capability to survive it. The rapid recovery of this forest when heavy rains begin confirms the tight coupling between the trees and the available soil moisture."

In short, winter has a significant impact on the primary growing season for these mountain trees, because moisture is continually available from rain or snow, the tree root zones don't freeze, and there is enough sunlight for photosynthesis. The trees slow down during the pre-monsoon dry season in May and June when water is scarce, and then quickly respond to the sudden availability of water at the onset of the monsoon in July.

As unlikely as it may seem, Arizona does experience a monsoon every summer. Certain roads have yellow warning signs posted -- "Do Not Cross When Flooded." Though these signs may seem out of place in the middle of a desert, they have a serious purpose. In Arizona, as in other regions of the world such as India, residents must cope with a season of high temperatures, high winds and high moisture, resulting in potentially deadly weather.

The Arizona monsoon usually begins around July 7 and continues for the next two months, resulting in about one-third of the region's yearly rainfall. The monsoon varies from year to year in starting date, duration and intensity.

"The semi-arid forest ecosystem adapts to the extremes in the annual cycle of water availability by its ability to remain turned on during the winter," Brown said. "Water stress, rather than temperature, is the primary control on the forest's behavior. The trees will remain significantly active regardless of the season, providing they have access to moisture."

It remains to be seen whether coniferous forests at lower elevations in the western United States will be able to do the same if they are confronted with prolonged water scarcity.

Hal Kibbey | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>