Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avian flu virus unlikely to spread through water systems

08.01.2007
A close relative of the highly pathogenic avian influenza virus (H5N1) can be eliminated by waste and drinking water treatments, including chlorination, ultraviolet (UV) radiation and bacterial digesters. The virus is harmless to humans but provides a study case of the pathways by which the influenza could spread to human populations.

Cornell researchers studied the related virus, called H5N2, to see whether a hypothetical mutated form of H5N1 could infect people through drinking and wastewater systems. Researchers at Cornell and the U.S. Military Academy at West Point collaborated on the study, published in a recent issue of Environmental Engineering Science.

H5N2, a low-pathogenic avian influenza virus that is not contagious for humans, is physically similar to H5N1, which has been lethal to millions of birds globally and more than half of the almost 200 infected people mostly through handling infected birds, since 2003. Researchers and officials are concerned that if H5N1 mutates to transmit easily between people, a deadly global pandemic could occur.

"It is unknown if H5N1 is more resistant" than H5N2 to procedures used by the water management industry, said Araceli Lucio-Forster, the paper's lead author and a teaching support specialist in Cornell's Department of Microbiology and Immunology. Lucio-Forster will receive her Ph.D. in microbiology from Cornell in January 2007.

Because H5N1 requires high-level biosafety facilities, Lucio-Forster and colleagues used H5N2 as a surrogate virus. Given the similarities between the two viruses, she thinks that if H5N1 entered the water treatment system, "the virus should be inactivated, which means treated water may not be a likely source of transmission," said Lucio-Forster.

Overall, avian flu viruses do not survive well outside of a host. Still, the researchers tried to address concerns in the wastewater-treatment industry that if a human outbreak occurred, contaminated feces passing through the plant could infect plant workers and spread elsewhere through drinking water.

"You have some 50,000 treatment plants in the U.S., and all these operators that run the plants were concerned that if there were an influenza outbreak and everyone were sick, is it going to come into the plant and infect them and others," said co-author Dwight Bowman, a professor of parasitology at Cornell.

To test the effectiveness of UV radiation for killing the H5N2 virus, the researchers exposed the virus in drinking water as well as in wastewater effluents to UV light at varying levels. The treatment was very effective in killing H5N2 at levels well within industry standards (and at lower levels than are used for killing Cryptosporidium and Giardia in water).

For chlorine, which is mostly ubiquitous in U.S. drinking water, the results were less definitive. Inactivation of H5N2 depends on both chlorine concentrations and time of exposure. On average, U.S. treatment plants treat drinking water with chlorine concentrations of 1 milligram per liter for 237 minutes. Under these conditions, the researchers found that H5N2 (and probably H5N1) would be mostly inactivated, but further studies are needed to see if the viruses stay active when they come out of feces or are at different pH and salinity levels.

Similarly, the small laboratory-scale study found that bacterial digesters also reduced H5N2 to undetectable levels after 72 hours, which is consistent with industry standards. The researchers also found that higher digester temperatures inactivated the virus more quickly.

The UV and chlorine tests were conducted at the U.S. Military Academy.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>