Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avian flu virus unlikely to spread through water systems

08.01.2007
A close relative of the highly pathogenic avian influenza virus (H5N1) can be eliminated by waste and drinking water treatments, including chlorination, ultraviolet (UV) radiation and bacterial digesters. The virus is harmless to humans but provides a study case of the pathways by which the influenza could spread to human populations.

Cornell researchers studied the related virus, called H5N2, to see whether a hypothetical mutated form of H5N1 could infect people through drinking and wastewater systems. Researchers at Cornell and the U.S. Military Academy at West Point collaborated on the study, published in a recent issue of Environmental Engineering Science.

H5N2, a low-pathogenic avian influenza virus that is not contagious for humans, is physically similar to H5N1, which has been lethal to millions of birds globally and more than half of the almost 200 infected people mostly through handling infected birds, since 2003. Researchers and officials are concerned that if H5N1 mutates to transmit easily between people, a deadly global pandemic could occur.

"It is unknown if H5N1 is more resistant" than H5N2 to procedures used by the water management industry, said Araceli Lucio-Forster, the paper's lead author and a teaching support specialist in Cornell's Department of Microbiology and Immunology. Lucio-Forster will receive her Ph.D. in microbiology from Cornell in January 2007.

Because H5N1 requires high-level biosafety facilities, Lucio-Forster and colleagues used H5N2 as a surrogate virus. Given the similarities between the two viruses, she thinks that if H5N1 entered the water treatment system, "the virus should be inactivated, which means treated water may not be a likely source of transmission," said Lucio-Forster.

Overall, avian flu viruses do not survive well outside of a host. Still, the researchers tried to address concerns in the wastewater-treatment industry that if a human outbreak occurred, contaminated feces passing through the plant could infect plant workers and spread elsewhere through drinking water.

"You have some 50,000 treatment plants in the U.S., and all these operators that run the plants were concerned that if there were an influenza outbreak and everyone were sick, is it going to come into the plant and infect them and others," said co-author Dwight Bowman, a professor of parasitology at Cornell.

To test the effectiveness of UV radiation for killing the H5N2 virus, the researchers exposed the virus in drinking water as well as in wastewater effluents to UV light at varying levels. The treatment was very effective in killing H5N2 at levels well within industry standards (and at lower levels than are used for killing Cryptosporidium and Giardia in water).

For chlorine, which is mostly ubiquitous in U.S. drinking water, the results were less definitive. Inactivation of H5N2 depends on both chlorine concentrations and time of exposure. On average, U.S. treatment plants treat drinking water with chlorine concentrations of 1 milligram per liter for 237 minutes. Under these conditions, the researchers found that H5N2 (and probably H5N1) would be mostly inactivated, but further studies are needed to see if the viruses stay active when they come out of feces or are at different pH and salinity levels.

Similarly, the small laboratory-scale study found that bacterial digesters also reduced H5N2 to undetectable levels after 72 hours, which is consistent with industry standards. The researchers also found that higher digester temperatures inactivated the virus more quickly.

The UV and chlorine tests were conducted at the U.S. Military Academy.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>