Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avian flu virus unlikely to spread through water systems

08.01.2007
A close relative of the highly pathogenic avian influenza virus (H5N1) can be eliminated by waste and drinking water treatments, including chlorination, ultraviolet (UV) radiation and bacterial digesters. The virus is harmless to humans but provides a study case of the pathways by which the influenza could spread to human populations.

Cornell researchers studied the related virus, called H5N2, to see whether a hypothetical mutated form of H5N1 could infect people through drinking and wastewater systems. Researchers at Cornell and the U.S. Military Academy at West Point collaborated on the study, published in a recent issue of Environmental Engineering Science.

H5N2, a low-pathogenic avian influenza virus that is not contagious for humans, is physically similar to H5N1, which has been lethal to millions of birds globally and more than half of the almost 200 infected people mostly through handling infected birds, since 2003. Researchers and officials are concerned that if H5N1 mutates to transmit easily between people, a deadly global pandemic could occur.

"It is unknown if H5N1 is more resistant" than H5N2 to procedures used by the water management industry, said Araceli Lucio-Forster, the paper's lead author and a teaching support specialist in Cornell's Department of Microbiology and Immunology. Lucio-Forster will receive her Ph.D. in microbiology from Cornell in January 2007.

Because H5N1 requires high-level biosafety facilities, Lucio-Forster and colleagues used H5N2 as a surrogate virus. Given the similarities between the two viruses, she thinks that if H5N1 entered the water treatment system, "the virus should be inactivated, which means treated water may not be a likely source of transmission," said Lucio-Forster.

Overall, avian flu viruses do not survive well outside of a host. Still, the researchers tried to address concerns in the wastewater-treatment industry that if a human outbreak occurred, contaminated feces passing through the plant could infect plant workers and spread elsewhere through drinking water.

"You have some 50,000 treatment plants in the U.S., and all these operators that run the plants were concerned that if there were an influenza outbreak and everyone were sick, is it going to come into the plant and infect them and others," said co-author Dwight Bowman, a professor of parasitology at Cornell.

To test the effectiveness of UV radiation for killing the H5N2 virus, the researchers exposed the virus in drinking water as well as in wastewater effluents to UV light at varying levels. The treatment was very effective in killing H5N2 at levels well within industry standards (and at lower levels than are used for killing Cryptosporidium and Giardia in water).

For chlorine, which is mostly ubiquitous in U.S. drinking water, the results were less definitive. Inactivation of H5N2 depends on both chlorine concentrations and time of exposure. On average, U.S. treatment plants treat drinking water with chlorine concentrations of 1 milligram per liter for 237 minutes. Under these conditions, the researchers found that H5N2 (and probably H5N1) would be mostly inactivated, but further studies are needed to see if the viruses stay active when they come out of feces or are at different pH and salinity levels.

Similarly, the small laboratory-scale study found that bacterial digesters also reduced H5N2 to undetectable levels after 72 hours, which is consistent with industry standards. The researchers also found that higher digester temperatures inactivated the virus more quickly.

The UV and chlorine tests were conducted at the U.S. Military Academy.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>