Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avian flu virus unlikely to spread through water systems

08.01.2007
A close relative of the highly pathogenic avian influenza virus (H5N1) can be eliminated by waste and drinking water treatments, including chlorination, ultraviolet (UV) radiation and bacterial digesters. The virus is harmless to humans but provides a study case of the pathways by which the influenza could spread to human populations.

Cornell researchers studied the related virus, called H5N2, to see whether a hypothetical mutated form of H5N1 could infect people through drinking and wastewater systems. Researchers at Cornell and the U.S. Military Academy at West Point collaborated on the study, published in a recent issue of Environmental Engineering Science.

H5N2, a low-pathogenic avian influenza virus that is not contagious for humans, is physically similar to H5N1, which has been lethal to millions of birds globally and more than half of the almost 200 infected people mostly through handling infected birds, since 2003. Researchers and officials are concerned that if H5N1 mutates to transmit easily between people, a deadly global pandemic could occur.

"It is unknown if H5N1 is more resistant" than H5N2 to procedures used by the water management industry, said Araceli Lucio-Forster, the paper's lead author and a teaching support specialist in Cornell's Department of Microbiology and Immunology. Lucio-Forster will receive her Ph.D. in microbiology from Cornell in January 2007.

Because H5N1 requires high-level biosafety facilities, Lucio-Forster and colleagues used H5N2 as a surrogate virus. Given the similarities between the two viruses, she thinks that if H5N1 entered the water treatment system, "the virus should be inactivated, which means treated water may not be a likely source of transmission," said Lucio-Forster.

Overall, avian flu viruses do not survive well outside of a host. Still, the researchers tried to address concerns in the wastewater-treatment industry that if a human outbreak occurred, contaminated feces passing through the plant could infect plant workers and spread elsewhere through drinking water.

"You have some 50,000 treatment plants in the U.S., and all these operators that run the plants were concerned that if there were an influenza outbreak and everyone were sick, is it going to come into the plant and infect them and others," said co-author Dwight Bowman, a professor of parasitology at Cornell.

To test the effectiveness of UV radiation for killing the H5N2 virus, the researchers exposed the virus in drinking water as well as in wastewater effluents to UV light at varying levels. The treatment was very effective in killing H5N2 at levels well within industry standards (and at lower levels than are used for killing Cryptosporidium and Giardia in water).

For chlorine, which is mostly ubiquitous in U.S. drinking water, the results were less definitive. Inactivation of H5N2 depends on both chlorine concentrations and time of exposure. On average, U.S. treatment plants treat drinking water with chlorine concentrations of 1 milligram per liter for 237 minutes. Under these conditions, the researchers found that H5N2 (and probably H5N1) would be mostly inactivated, but further studies are needed to see if the viruses stay active when they come out of feces or are at different pH and salinity levels.

Similarly, the small laboratory-scale study found that bacterial digesters also reduced H5N2 to undetectable levels after 72 hours, which is consistent with industry standards. The researchers also found that higher digester temperatures inactivated the virus more quickly.

The UV and chlorine tests were conducted at the U.S. Military Academy.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>