Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean temperature predicts spread of marine species

27.12.2006
Scientists can predict how the distance marine larvae travel varies with ocean temperature – a key component in conservation and management of fish, shellfish and other marine species – according to a new study from the University of North Carolina at Chapel Hill.

Most marine life, including commercially important species, reproduces via larvae that drift far along ocean currents before returning to join adult populations. The distance larvae travel before maturing, called dispersal, is directly linked to ocean temperature, the researchers found. For example, larvae from the same species travel far less in warmer waters than in colder waters, said lead author Mary O'Connor, a graduate student in marine ecology in UNC's curriculum in ecology and the department of marine sciences in the College of Arts and Sciences.

"Temperature can alter the number and diversity of adult species in a certain area by changing where larvae end up," O'Connor said. "It is important to understand how a fish population is replenished if we want to attempt to manage or conserve it."

Using data from 72 marine species, including cod, herring, American lobster, horseshoe crabs and clams, O'Connor and her colleagues developed a model that predicts how far larvae travel at a certain temperature. The predictions appear to hold for virtually all marine animals with a larval life cycle.

"We can apply this rule to animals without having to go out and measure every species," O'Connor said. "Our general model gives us a powerful new way to study larval movement with knowledge about ocean temperature, which is much easier to come by. With models such as this, we can see what large-scale changes in ocean temperature may mean for adult populations."

The study appeared online the week of Dec. 25 in the Proceedings of the National Academy of Sciences Early Edition.

Knowing dispersal distance is a critical component for managing commercially important or invasive species, O'Connor said. "For many animals, the larval phase is the only chance for babies to get away from parents. Dispersal prevents inbreeding; for some species, this is a time to move from breeding ground to habitat where they'll mature," she said.

But less than 1 percent of larvae survive dispersal. They are consumed by predators, encounter harsh environments or never reach their destination and starve. For endangered species, survival of some animals may depend on whether offspring from parents in one protected area can get to another area where they are safe from harvest. "In warmer waters, marine protected areas may need to be closer together than in colder water, since in warmer water dispersal distances tend to be shorter," O'Connor said.

While a one degree increase in temperature at the ocean surface means larvae will travel a shorter distance in warm seas, the effect is more severe when temperatures are below about 59 degrees Fahrenheit (15 degrees Celsius), O'Connor said. Along California's coast, sea surface temperature may warm from 53 degrees to 59 degrees Fahrenheit during an El Nino year, when a warm ocean current appears in the equatorial Pacific Ocean. Larvae that travel 62 miles at 53 degrees Fahrenheit would disperse only 46 miles at 59 degrees.

"On the up side, shorter dispersal can mean greater survival because the larvae spend less time in the water, where they are at a high risk of death. On the down side, it could mean they won't travel as far and may not make it to their juvenile habitat," O'Connor said.

The researchers suspect temperature plays an important role in larval dispersal because metabolic processes in larvae are sensitive to temperature and similar among species. Consequently, larvae in cold waters develop more slowly and drift further before beginning their next development stage because colder temperatures cause sluggish metabolisms.

Becky Oskin | EurekAlert!
Further information:
http://www.unc.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>