Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomaterials vulnerable to dispersal in natural environment

20.12.2006
Laboratory experiments with a type of nanomaterial that has great promise for industrial use show significant potential for dispersal in aquatic environments -- especially when natural organic materials are present.

When mixed with natural organic matter in water from the Suwannee River -- a relatively unpolluted waterway that originates in southern Georgia -- multiwalled carbon nanotubes (MWNTs) remain suspended for more than a month, making them more likely to be transported in the environment, according to research led by the Georgia Institute of Technology.

Carbon nanotubes, which can be single- or multiwalled, are cylindrical carbon structures with novel properties that make them potentially useful in a wide variety of applications including electronics, composites, optics and pharmaceuticals.

"We found that natural organic matter, or NOM as we call it, was efficient at suspending the nanotubes in water," said Jaehong Kim, an assistant professor in the Georgia Tech School of Civil and Environmental Engineering.

The research will be published in the January issue of the American Chemical Society journal Environmental Science & Technology. Kim is the senior author and conducted the research with Professor Joseph Hughes, graduate student Hoon Hyung, both at Georgia Tech, and postdoctoral researcher John Fortner from Georgia Tech and Rice University. The U.S. Environmental Protection Agency funded the research.

"We don't know for certain why NOM is so efficient at suspending these nanotubes in the laboratory," Kim said. "We think NOM has some chemical characteristics that promote adhesion to the nanotubes more than to some surfactants. We are now studying this further."

In the lab, Kim and his colleagues compared the interactions of various concentrations of MWNTs with different aqueous environments organic-free water, water containing a 1 percent solution of the surfactant sodium dodecyl sulfate (SDS), water containing a commercially available sample of Suwannee River NOM and an actual sample of Suwannee River water from the same location as the commercially available preparation. They agitated each sample for one hour and then let it sit for up to one month.

The researchers then used transmission electron microscopy (TEM), measurements of opacity and turbidity, and other analyses to determine the behavior of MWNTs in these environments. The results were:

MWNTs added to organic-free water settled quickly, and the water became completely transparent in less than an hour.

When added to the SDS solution, the nanotubes immediately made the water dark and cloudy. After one day of settling, some nanotubes remained suspended, and the water was a light gray color.

Water containing the commercially available sample of Suwannee River NOM originally appeared dark and cloudy, then gradually lightened after four days of settling. Some MWNTs remained suspended for more than a month.

The results with an actual Suwannee River sample were similar to those with the commercially available preparation.

In addition, Kim and his colleagues used TEM to find that most MWNTs in both samples of NOM were suspended as individually dispersed nanotubes, rather than being clustered together as some other nanomaterials do in water. "This individual dispersion might make them more likely to be transported in a natural environment," Kim explained.

In light of these findings, Kim and his colleagues have expanded their research to other nanomaterials, including single-walled carbon nanotubes and C60, the so-called "buckyball" molecules in the same family as carbon nanotubes. They are also experimenting with other NOM sources and studying different mixing conditions. "We are getting some interesting results, though our findings are still preliminary," Kim noted.

While researchers explore applications of nanomaterials and industry nears commercial manufacture of these novel products, it's essential for scientists and engineers to study the materials' potential environmental impact, Kim added.

"Natural organic matter is heterogeneous," he explained. "It's a complex mixture made from plants and microorganisms, and it's largely undefined and variable depending on the source. So we have to continue to study nanomaterial transport in the lab using various NOM sources to try to better understand their potential interaction in the natural environment."

In related research, Kim's research team is studying various other aspects of the fate of nanomaterials in water -- including photochemical and chemical reactions of C60 colloidal aggregates -- with the ultimate goal of understanding the environmental implications of nanotechnology.

Jane M. Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>