Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This party doesn't start until the hosts arrive

20.12.2006
Parasite invasions may depend on host invasions

Disease causing organisms can be present in some areas where their hosts are not. If their hosts arrive, novel disease outbreaks may result. In the first comprehensive genetic analysis of an invasive marine host and its parasites, researchers trace invasion pathways of snails and trematodes from Japan to North America.

Their results, published in the Proceedings of the National Academy of Sciences, have broad implications for identifying and mitigating spreading disease in a global economy. Simultaneously understanding the invasion pathways of disease-causing organisms and their hosts will be key in limiting future disease outbreaks—in humans, agriculture and wildlife.

Invasive populations of Asian mud snails, Batillaria attramentaria, probably arrived in North America with Pacific oysters, Crassostrea gigas, imported from northern Japan in the early 1900's. Genetic research by Osamu Miura, Tohoku University, and colleagues from the Smithsonian Institution and UC Santa Barbara confirmed this. "We saw a lot of genetic variation among snail populations in Japan but the North American snails are genetically most similar to those from northern Japan, the source of the imported oysters," Miura reports.

Of the eight species of trematode parasites that plague the snails in Japan, only the most common, Cercaria batillariae, has arrived in America. Luckily for the researchers, gene sequencing showed that this single species actually consisted of several genetically distinct cryptic species in its home range in Japan. In North America, they commonly found two of the cryptic species. One parasite shows much less genetic diversity in America than in Japan, whereas the other parasite is equally diverse in both regions.

"Genetic evidence suggests that while one cryptic parasite species experienced a bottleneck and probably came with the snails, the other was probably historically dispersed by migratory birds and could only establish in North America after the snail hosts arrived," adds Mark Torchin, of the Smithsonian Tropical Research Institute.

"This is because these trematode parasites have complex life cycles, using snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts. As we homogenize biotas as a result of repeated species invasions through global trade, we increase the chances of reuniting infectious agents with suitable hosts," says Torchin. Parasites which may have historically gone unnoticed as tourists in some regions may become pervasive residents after invasion of their missing hosts.

Mark Torchin | EurekAlert!
Further information:
http://www.si.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>