Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe fixes nitrogen at a blistering 92 C

18.12.2006
May offer clues to evolution of nitrogen fixation

A heat-loving archaeon capable of fixing nitrogen at a surprisingly hot 92 degrees Celsius, or 198 Fahrenheit, may represent Earth’s earliest lineages of organisms capable of nitrogen fixation, perhaps even preceding the kinds of bacteria today's plants and animals rely on to fix nitrogen.

The genetic analysis reported in the Dec. 15 issue of Science supports the notion that the gene needed to produce nitrogenase – an enzyme capable of converting nitrogen gas, that's unusable by life, to a form like ammonia that is useable – arose before the three main branches of life – bacteria, archaea and eukaryotes – diverged some 3.5 billion years ago, according to oceanographer Mausmi Mehta, who recently received her doctorate from the UW, and John Baross, UW professor of oceanography. This is opposed to the theory that the nitrogenase system arose within archaea and was later transferred laterally to bacteria.

"There's been lots of evidence that point to high-temperature archaea as the first life on Earth but the question has been, 'So why can’t we find archaea that fix nitrogen at high temperatures"'" says Baross, who’s been on a 20-year quest to find just such a microbe. Archaea are single-celled organisms that live under extreme environmental conditions, such as the high temperatures and crushing pressures below the seafloor. If heat-loving archaea were the first life on the planet, they would have needed a usable source of nitrogen, Baross says.

Known as FS406-22 because of the fluid and culture samples it came from, the archaeon discovered by the UW researchers is the first from a deep-sea hydrothermal vent that can fix nitrogen, says Mehta, first author on the Science paper.

It was collected at Axial Volcano on the Juan de Fuca Ridge off the coast of Washington and Oregon. Fixing nitrogen at 92 C smashes the previous record by 28 C, a record held by Methanothermococcus thermolithotrophicus, an archaeon that was isolated from geothermally heated sand near an Italian beach and fixes nitrogen at temperatures up to 64 C.

Nitrogen is necessary for all life because it is an essential part of amino acids and proteins. To be used by organisms, gaseous nitrogen must be converted to other compounds, or "fixed," which can only be done by certain bacteria and specific archaea. Nitrogen can be fixed into ammonia, nitrate and other products that can be used by land and sea plants, which in turn are eaten by higher animals.

Today's oceans contain nitrogen both as a dissolved gas and as nitrate. Ocean water that percolates down into the seafloor can pick up enough heat from volcanism deep in the earth to cause the fixed nitrogen to revert to its gaseous form. Venting water hotter than 30 C contains very little nitrate so organisms in areas where the subseafloor temperatures are higher would lack nitrogen in a form they can use.

The discovery of FS406-22's nitrogen fixing capabilities at 92 C, therefore, widens the realm of where life can grow in the subseafloor biosphere and other nitrogen-limited ecosystems, perhaps even on other planets, Mehta says.

Scientists have speculated since 1981 that nitrogen fixation was occurring at hydrothermal vents because vent animals had completely different nitrogen isotope ratios than non-vent deep sea animals.

The work that led to FS406-22 was supported by Washington Sea Grant, based at the UW, and the NASA Astrobiology Institute. Mehta worked five years doing some 600 enrichments, with FS406-22 being the only one she was could wean off fixed nitrogen completely. An unimpressive looking sphere of a microbe, FS406-22 is able to grow with gaseous nitrogen as its sole source of nitrogen at temperatures ranging from 58 to 92 C, with the fastest growth at 90 C.

The genetic analysis shows FS406-22 as having one of the deepest-rooted genes and the most primordial characteristics in terms of gene sequence, Baross says.

"We propose that among diazotrophic archaea, the nitrogenase from FS406-22 might have retained the most ancient characteristics, possibly derived from a nitrogenase present in the last common ancestor of modern life," the co-authors conclude in their report.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>