Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sperm and eggs fall foul of fallout

08.02.2002


470 nuclear weapons were detonated in Kazakhstan between 1949 and 1989
© SPL


Nuclear tests up gene mutation risk.

People in the remote former Soviet republic of Kazakhstan who were exposed to fallout from nuclear-weapon tests have more genetic mutations in their eggs and sperm than normal, researchers have found1. Their children could inherit health defects caused by such mutations.

The Soviet Union detonated 470 nuclear weapons at the Semipalatinsk nuclear-testing site between 1949 and 1989, many above ground. The blasts showered radioactive dust over a 100-kilometre area. Inhabitants received up to one-fifth of a lethal radiation dose.



This has reputedly caused cancer and other health problems amongst the area’s sparse population. But medical evidence has been meagre.

Scientists do not know whether this type of radiation exposure causes genetic damage in humans, and if so, whether the damage is passed on to children. The three generations of affected individuals now living in Kazakhstan enabled Yuri Dubrova of the University of Leicester, UK, and his team to start estimating the harm that has been caused.

The researchers found double the normal rate of genetic changes in people’s sperm and eggs. These cells form future offspring, so the mutations are likely to be hereditary.

"[Until recently] no one had been able to measure the genetic effects of exposure," says Dudley Goodhead, who directs the MRC Radiation and Genome Stability Unit in Harwell, UK. "[The Kazakhstan work] indicates that mutations can occur at an enormously high rate."

The researchers still do not know whether this genetic damage has caused health problems for the area’s children, or whether it will do so in the future, because mutations only rarely result in disease. "It wouldn’t be surprising," says Goodhead. But researchers agree that any effects of inherited mutations are likely to be small and difficult to detect against the normal incidence rates of cancer and disease.

People directly exposed to radiation by the atomic-bomb detonations in Japan during the Second World War and by nuclear accidents such as Chernobyl, suffer increased rates of cancer. But the common perception that exposed individuals bear children with deformities is not backed up by scientific study.

Measuring the legacy

Measuring the mutation rate caused by radiation has proved difficult, explains Goodhead. Any given gene will be affected rarely, so only a large population would reveal an accurate frequency - and no such human population exists.

Dubrova instead looked at DNA fingerprints, which show many short sections of DNA that spontaneously vary, or mutate, from generation to generation. In 1996, he showed that children born in Belarus after the Chernobyl disaster have a higher rate of such mutations2.

In the Semipalatinsk population, the team found that the more years people were exposed to the radiation, the greater their mutation rate.

Knowing how the rate varies with radiation dose could be used to screen populations for suspected exposure. "We’d love to know that," says David Rush, who studies the health effects of radiation at Tufts University in Boston.

Test ban

Alongside the Soviet Union, the United States carried out above-ground nuclear tests in the Nevada desert; both nations ceased testing with the Moscow treaty in 1963. The Semipalatinsk site was closed in 1989 as part of the campaign to establish a comprehensive test-ban treaty. This treaty has yet to be ratified.

The Kazakhstan population has since fought for financial and health compensation, and Dubrova hopes that his work might help their cause: "I would be delighted if that were the case," he says.

References

  1. Dubrova, Y.E. Nuclear weapons tests and human germline mutation rate. Science, 295, 1037, (2002).
  2. Dubrova, Y.E. et al. Human minisatellite mutation rate after the Chernobyl accident. Nature, 380, 683 - 686(1996).


HELEN PEARSON | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-10.html

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>