Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixed prairie grasses are better biofuel source, U of M study says

08.12.2006
Fuels made from prairie biomass reduce atmospheric carbon dioxide

Highly diverse mixtures of native prairie plant species have emerged as a leader in the quest to identify the best source of biomass for producing sustainable, bio-based fuel to replace petroleum.

A new study led by David Tilman, Regents Professor of Ecology in the University of Minnesota's College of Biological Sciences, shows that mixtures of native perennial grasses and other flowering plants provide more usable energy per acre than corn grain ethanol or soybean biodiesel and are far better for the environment.

"Biofuels made from high-diversity mixtures of prairie plants can reduce global warming by removing carbon dioxide from the atmosphere. Even when grown on infertile soils, they can provide a substantial portion of global energy needs, and leave fertile land for food production," Tilman said.

The findings are published in the Dec. 8 issue of the journal Science and featured on the cover.

Based on 10 years of research at Cedar Creek Natural History Area, the study shows that degraded agricultural land planted with highly diverse mixtures of prairie grasses and other flowering plants produces 238 percent more bioenergy on average, than the same land planted with various single prairie plant species, including monocultures of switchgrass.

Tilman and two colleagues, postdoctoral researcher Jason Hill and research associate Clarence Lehman, estimate that fuel made from this prairie biomass would yield 51 percent more energy per acre than ethanol from corn grown on fertile land. This is because perennial prairie plants require little energy to grow and because all parts of the plant above ground are usable.

Fuels made from prairie biomass are "carbon negative," which means that producing and using them actually reduces the amount of carbon dioxide (a greenhouse gas) in the atmosphere. This is because prairie plants store more carbon in their roots and soil than is released by the fossil fuels needed to grow and convert them into biofuels. Using prairie biomass to make fuel would lead to the long-term removal and storage of from 1.2 to 1.8 U.S. tons of carbon dioxide per acre per year. This net removal of atmospheric carbon dioxide could continue for about 100 years, the researchers estimate.

In contrast, corn ethanol and soybean biodiesel are "carbon positive," meaning they add carbon dioxide to the atmosphere, although less than fossil fuels.

Switchgrass, which is being developed as a perennial bioenergy crop, was one of 16 species in the study. When grown by itself in poor soil, it did not perform better than other single species and gave less than a third of the bioenergy of high-diversity plots.

"Switchgrass is very productive when it's grown like corn in fertile soil with lots of fertilizer, pesticide and energy inputs, but this approach doesn't yield as much energy gain as mixed species in poor soil, nor does it have the same environmental benefits," said Hill.

To date, all biofuels, including cutting-edge nonfood energy crops such as switchgrass, elephant grass, hybrid poplar and hybrid willow, have been produced as monocultures grown primarily in fertile soils.

The researchers estimate that growing mixed prairie grasses on all of the world's degraded land could produce enough bioenergy to replace 13 percent of global petroleum consumption and 19 percent of global electricity consumption.

The practice of using degraded land to grow mixed prairie grasses for biofuels could provide stable production of energy and have additional benefits, such as renewed soil fertility, cleaner ground and surface waters, preservation of wildlife habitats, and recreational opportunities.

There are 30 million acres of grasslands in the U.S. Conservation Reserve Program (CRP), which pays farmers to manage land to benefit the environment. Current CRP regulations do not allow prairie grasses grown on this land to be used for renewable energy, but the U.S. Farm Bill could be revised to accommodate this practice, Tilman added. Doing so would have important economic, environmental and energy security benefits.

"It is time to take biofuels seriously," Tilman said. "We need to accelerate our work on biomass production and its conversion into useful energy sources. Ultimately, this means we need to start paying farmers for all the services they provide society -- for biofuels and for the removal and storage of carbon dioxide."

David Ruth | EurekAlert!
Further information:
http://www.umn.edu
http://www.lter.umn.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>