Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ongoing collapse of coral reef shark populations

05.12.2006
Investigators have revealed that coral reef shark populations are in the midst of rapid decline, and that “no-take zones”—reefs where fishing is prohibited—do protect sharks, but only when compliance with no-take regulations is high. The findings, reported by William Robbins and colleagues at James Cook University and its ARC Centre of Excellence for Coral Reef Studies, appear in the December 5th issue of Current Biology.

Reef sharks are so-called apex predators on tropical coral reefs and are therefore of significant potential importance to the functioning of coral reef ecosystems. The reproductive biology of reef sharks makes them particularly vulnerable to fishing, but until now, there have been no studies of the response of these sharks to fishing pressure.

The new work focused on Australia’s Great Barrier Reef, which is widely considered to be one of the world’s least degraded, and best managed, reef systems. For balancing conservation with sustainable use, the Great Barrier Reef is regulated through an extensive series of management zones in which different areas are open to different levels of fishing. In their study, the researchers determined the status of two species of reef shark—the whitetip and grey reef sharks—by employing a unique combination of fisheries-independent abundance estimates and measurements of the survival and reproduction of individual sharks. Their findings show that reef shark abundance on reefs open to fishing are about ten times lower than on unfished reefs.

Moreover, high reef shark abundance was only apparent on the most strictly enforced of the no-take zones, suggesting that even moderate levels of poaching can derail attempts to protect shark populations. These observations, coupled with population modeling showing ongoing, rapid declines in population size in fished areas, lead the authors to conclude that reef sharks are approaching “ecological extinction”—that is, becoming so rare that they can no longer perform their natural role in the functioning of coral reef ecosystems.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>