Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pendulums, predators and prey: The ecology of coupled oscillations

05.12.2006
Connect one pendulum to another with a spring, and in time the motions of the two swinging levers will become coordinated.

This behavior of coupled oscillators---long a fascination of physicists and mathematicians---also can help biologists seeking to understand such questions as why some locations overflow with plants and animals while others are bereft, University of Michigan theoretical ecologist John Vandermeer maintains.

In the cover article for the December issue of the journal BioScience, Vandermeer summarizes theoretical work he has done over the past decade, leading to his conclusion that ecologists seeking to understand complex interactions in nature should pay closer attention to coupled oscillations.

The basic idea of oscillating populations is not new to ecology.

"We know that any predator-prey system, say lions and zebras for example, shows oscillations," said Vandermeer, who is the Margaret Davis Collegiate Professor of Ecology and Evolutionary Biology. "If there are lots of lions preying on zebras, numbers of zebras decline; then because zebras are scarce, lions starve and their numbers dwindle, allowing the zebra population to build up again. You see this oscillation, changing on a regular basis from lots of predators with few prey to lots of prey with few predators. The pattern is like waves or pulsations."

What gets interesting is when two independently oscillating systems, such as lions preying on zebras and cheetahs preying on impalas, become connected through the invasion of a third predator---leopards, for instance.

"When they become connected, the situation is very much like connecting two springs together---the ups and downs get into regular patterns." In the case of lions, cheetahs and leopards, bringing leopards into the system causes lion and cheetah populations to oscillate in phase with each other----peaking and declining at the same time. That works to the leopard's advantage---when both lion and cheetah populations are low, leopards can pounce on the plentiful prey. But then lions and cheetahs increase again, eventually building up their numbers and combined competitive strength enough to drive out the leopards---at least until the next low point in the lions' and cheetahs' population cycles.

Predator-prey systems can also become coupled when a new prey species invades and competes for resources with prey species in two previously unconnected predator-prey systems. For example, an extremely fast antelope might begin competing with zebras and impalas for food. Even though neither lion nor cheetah is fast enough to prey on the new antelope, the antelope's activity links the previously unconnected lion-zebra and cheetah-impala pairs. In such a case, the ups and downs of the two original prey species are thrown into chaotic but coordinated patterns, Vandermeer said.

"That's what's known as coordinated chaos---a phenomenon that occurs in some physical systems, such as lasers, but hadn't been pointed out in ecology before." By oscillating out of phase with the other two grazers---zebras and impalas---the antelope can coexist with them, prospering when their numbers are low.

Considering such scenarios with the aid of mathematical simulations such as Vandermeer's can help address questions biologists have wrestled with for decades, such as how species that appear to be exploiting the same resources can coexist and why some predator-prey systems are particularly resistant to invaders.

"In the past, ecologists have taken a traditional Newtonian view of the world, where everything comes into a nice equilibrium," Vandermeer said. "But oscillations sometimes destroy that equilibrium. What I'm suggesting is that we ecologists need to acknowledge the inherent oscillation in consumer-resource systems, such as predator-prey, herbivore-plant and parasite-host systems, and start approaching these old ecological issues in terms of coupled oscillators."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>