Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New University research institute to produce clean energy technologies for a greener future

28.11.2006
A new research institute being launched at The University of Nottingham is to bring together academics and industrial partners nationally and internationally to develop cutting–edge energy technologies that are both sustainable and affordable.

The Energy Technologies Research Institute will feature a multidisciplinary team of more than 100 engineers and physical and social scientists working on research projects totalling more than £8 million. The academics will work in collaboration with a range of industrial partners in the energy sector, including E.ON and Rolls Royce on projects funded by the UK research councils, the Department of Trade and Industry and the European Union.

Professor Colin Snape, director of the new institute, said: “Under the looming threat of global climate change and our hunger for cost-effective and environmentally-friendly energy, new clean fossil technologies linked to carbon capture and storage, hydrogen fuel cells and natural sources of power such as solar and wind energy will all play a vital role in changing the way in which we use energy worldwide.”

The new institute will focus on six broad themes:

Clean fossil fuels and carbon abatement technologies including research into cleaner coal technology, carbon dioxide (CO2) capture and storage, together with light-harvesting, which is the use of light energy for photochemical conversion of CO2 into fuels or chemicals. The internationally-renowned research on coal science includes new adsorbents for CO capture and for toxic trace metals, such as mercury.

Hydrogen and fuel cells including research into hydrogen generation, storage and power generation by fuel cells and for use in powering vehicles. A highlight of the research programme is the world-leading effort on new materials to store hydrogen in high capacities.

Renewable energy production — will include research into renewable energies aimed at reducing pollution such as solar and wind energy and forestry and agriculture crops such as sugar beet, wheat, barley and oilseed rape which can either be used directly to produce energy ie. through burning for heat, or converted into electricity, biogas, biodiesel or bioethanol.

Infrastructure technologies for green energy encompassing research to develop new facilities, equipment and systems for delivering and distributing energy such as electricity created from renewable sources.

Energy efficient technology in the built environment covers a wide range of new technologies that will make use of renewable energies in buildings. This will include efficient energy technologies to provide heating, ventilation and air conditioning of buildings and hot water supply. This activity is centred on the School of the Built Environment, which has established unique research facilities including the David Wilson Millennium Eco-house, Sustainable Research Building, Environmental Centre for Architecture and Marmont Renewable Energy Centre.

Environmental impact, economic and social aspects includes research into the environmental risks of new technologies, understanding the geography and sociology of the energy market, for example, research into the restructuring of the coal industry in the Ukraine, and public understanding and acceptance of new developments in energy technologies.

The new Energy Technologies Research Institute will be officially launched by the Acting Vice-Chancellor of The University of Nottingham, Professor David Greenaway, at a special event being held in the Exchange Building on Jubilee Campus from 5.30pm on Wednesday November 29.

The event will feature an inaugural lecture by newly-appointed special professor Allan Jones, Head of Research and Development at energy company E.ON, on the topic Successes in Coal Research and Development for Power Generation and the Challenges of a Low Carbon Future.

Professor Jones said: “As we face the challenge of climate change we need to develop today cleaner energy technologies for tomorrow and that's something that not only drives me every day, it also drives E.ON.

“We're committed to both reducing the carbon intensity of our own operations and to helping find new ways for the UK and the world to reduce carbon. Our work with the University will help to strengthen that work and, by using the brightest minds wherever we can, together we can help plan for a low carbon future.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>