Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite images and landslide analysis reveal undisclosed destruction in North Korea

27.11.2006
New satellite pictures released today captured by the micro-satellite TopSat reveal for the first time the full extent of the destruction in North Korea caused by super typhoon Bilis in July this year.

North Korea’s official fatality figures as a result of the typhoon is 549 people, with a further 295 people reported as missing. However, analysis by Durham University’s International Landslide Centre reveals that the death toll is likely to have been well over 10,000 people, and possibly even considerably more than this.

Following concerning reports from NGOs in South Korea of 57,000 fatalities, landslide expert Professor Dave Petley and his team at Durham University’s International Landslide Centre commissioned satellite images from TopSat, a new micro-satellite designed and built by a QinetiQ-led consortium of British firms, and examined detailed before and after images of the town Yangdok in North Korea in order to determine the actual impact of the typhoon.

The before and after satellite images of Yangdok reveal clear evidence of devastating floods and landslides from 14 to 17 July 2006. Landslides occurred on many slopes, ripping through the communities in the valleys. In addition, the rivers overflowed their banks, sweeping away bridges and apartment blocks. In just one small community on the outskirts of Yangdok at least 27 large apartment blocks were destroyed or seriously damaged. As the floods and landslides occurred between midnight and 4 am, it is likely that people were buried or drowned in the lower storeys of buildings that were not destroyed.

Across the area studied, which is just a small part of the total region devastated by the typhoons, there is ample evidence of severe damage to infrastructure, including washed out bridges; destroyed roads and railway lines; and complete infilling of reservoirs. In addition, there appears to have been extensive damage to agricultural land, which will inevitably seriously affect food production in the future.

Since the event there is some evidence of the construction of new buildings in both the towns and the rural areas, although the numbers are very much less than that of the destroyed buildings.

Professor David Petley, Director of Durham’s International Landslide Centre said: “It is clear that the level of damage is extremely high. Based on experience from other disasters sites and as the flood is believed to have happened in the middle of the night, when many of the inhabitants in the mainly residential buildings were sleeping, it is likely that the death toll associated with these floods would have been very high, probably well over 10,000 rather than the official figure of 549. Certainly Typhoon Bilis resulted in a disaster on an epic scale in North Korea.”

Professor Petley's report will now form part of the unique global database of landslide fatalities that the International Landslide Centre is compiling in which all known fatal landslide and rockfall events are collated, to allow the team to analyse patterns of occurrence in space and time.

TopSat, the new technology that provided the images for this study, is a micro-satellite system that provides high resolution imaging of the Earth quickly and cost effectively. The satellite is designed to return its data directly to a mobile ground station immediately after collecting an image, allowing far more timely delivery of the information which it collects than standard satellites. The system is specifically designed to meet operational timescales, whether for disaster relief, news-gathering, or other applications where speed of response is vital.

"We are delighted that TopSat has made this important study possible," commented Ian Reid, Managing Director of QinetiQ's Space Division. "QinetiQ is able to respond to short notice tasking, delivering TopSat images quickly and at low cost."

The UK consortium behind TopSat was formed and is led by QinetiQ, a global defence and security company who own the satellite and are responsible for day-to-day operations. It also includes CCLRC Rutherford Appleton Laboratory who designed and built the camera, Surrey Satellite Technology Ltd (SSTL) who built the spacecraft bus and Infoterra who are responsible for data exploitation. The programme, originally funded by the British National Space Centre (BNSC) and the UK Ministry of Defence, is now a commercial venture.

Media and Public Affairs Team | alfa
Further information:
http://www.durham.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>