Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aston University introduces biomass to China’s coal-fired power plants

Aston University’s Bioenergy Research Group is part of a European-Chinese team that will assess market opportunities for EU companies to introduce cofiring of biomass in China’s coal fired power stations in a new project launched this month.

The €590,000 ChEuBio (China EU Bioenergy project), funded by the European Commission, is a two-year initiative that will evaluate commercial possibilities of cofiring biomass in China’s coal fired power stations to help cut the country’s dependence on fossil fuel and reduce its greenhouse gas emissions.

Andrew Minchener, the Project Co-ordinator, said: “The potential impact of substituting coal with a CO2 neutral fuel is large. If half of the biomass wastes currently produced in China could be utilised in the existing power plants it could displace over 200 million tonnes of coal.”

Coal has fuelled China’s emergence as an economic powerhouse and today the country is the world’s largest coal producer and consumer. With over 70% of all energy consumed in China coming from coal, the market is promising for EU companies keen to introduce their cofiring technology to new markets.

Cofiring, which is not currently practiced in China, involves burning coal and biomass together – mainly straw, reed, rice husks, and wastes from crops and wood. Cofiring cuts down on greenhouse gas emissions and can help to reduce global warming because biomass is a ‘carbon neutral’ fuel releasing the same amount of carbon when it is burned as it absorbs while growing.

China's economy is dauntingly complex. Its distributed farms make the logistics of biomass collection and transport challenging. ChEuBio will gather data on the biomass sources and availability, undertake case studies of various plants to assess possibilities for cofiring in China’s coal power plants, and determine the commercial potential for cofiring in China.

Aston University’s Bioenergy Research Group will use geographic modelling to evaluate the potential of using various biomass feedstocks in different regions of China, and will help to communicate the findings to the Chinese power industry and policy makers in the country.

Professor Tony Bridgwater, Head of the Bioenergy Research Group, said: “The fast growing economy in China offers enormous possibilities for bioenergy to make a major contribution to improving the global environment.”

ChEuBio will share the results with the European co-firing industry and help companies form technology partnerships with Chinese power stations.

Crystal Luxmore | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>