Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aston University introduces biomass to China’s coal-fired power plants

23.11.2006
Aston University’s Bioenergy Research Group is part of a European-Chinese team that will assess market opportunities for EU companies to introduce cofiring of biomass in China’s coal fired power stations in a new project launched this month.

The €590,000 ChEuBio (China EU Bioenergy project), funded by the European Commission, is a two-year initiative that will evaluate commercial possibilities of cofiring biomass in China’s coal fired power stations to help cut the country’s dependence on fossil fuel and reduce its greenhouse gas emissions.

Andrew Minchener, the Project Co-ordinator, said: “The potential impact of substituting coal with a CO2 neutral fuel is large. If half of the biomass wastes currently produced in China could be utilised in the existing power plants it could displace over 200 million tonnes of coal.”

Coal has fuelled China’s emergence as an economic powerhouse and today the country is the world’s largest coal producer and consumer. With over 70% of all energy consumed in China coming from coal, the market is promising for EU companies keen to introduce their cofiring technology to new markets.

Cofiring, which is not currently practiced in China, involves burning coal and biomass together – mainly straw, reed, rice husks, and wastes from crops and wood. Cofiring cuts down on greenhouse gas emissions and can help to reduce global warming because biomass is a ‘carbon neutral’ fuel releasing the same amount of carbon when it is burned as it absorbs while growing.

China's economy is dauntingly complex. Its distributed farms make the logistics of biomass collection and transport challenging. ChEuBio will gather data on the biomass sources and availability, undertake case studies of various plants to assess possibilities for cofiring in China’s coal power plants, and determine the commercial potential for cofiring in China.

Aston University’s Bioenergy Research Group will use geographic modelling to evaluate the potential of using various biomass feedstocks in different regions of China, and will help to communicate the findings to the Chinese power industry and policy makers in the country.

Professor Tony Bridgwater, Head of the Bioenergy Research Group, said: “The fast growing economy in China offers enormous possibilities for bioenergy to make a major contribution to improving the global environment.”

ChEuBio will share the results with the European co-firing industry and help companies form technology partnerships with Chinese power stations.

Crystal Luxmore | alfa
Further information:
http://www.aston-berg.co.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>