Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New maps emphasize the human factor in wildfire management

20.11.2006
As wildfires put more and more human lives and property at risk, people are looking to fire managers for protection.

Typically, fuel is the sole consideration used to decide the location of site treatments - where trees and shrubs are cleared away or burned in order to minimize the risk of a future fire. However, people also strongly affect wildfires.

This influence is not well understood, and is often overlooked when making management decisions.

To help fire managers identify the best locations for site treatments in one particularly fire-prone region in Southern California, a University of Wisconsin-Madison team developed a map that incorporates both environmental and human factors to pinpoint where the most devastating wildfires are likely to start in the Santa Monica Mountains, located just north of Los Angeles.

"The vegetation in Southern California is extremely flammable. In some places, it's like there is a continuous blanket of fuel on the ground," says Alexandra Syphard, a postdoctoral researcher in the UW-Madison department of forest ecology and management, who will give the talk. She notes that this fuel is easy tinder for cigarette butts, campfires run amok and the intentional flames of arsonists. Through these and other means, humans cause 95 percent of fires in southern California.

Most of these fires occur near the wildland-urban interface, where houses and other structures commingle with forests and other wild vegetation. "The wildland-urban interface is where houses are most vulnerable to fire because they are intermingled with fuel. The problem is that this is also where humans are most likely to start fires," says Syphard.

To generate her computer models, Syphard utilized a variety of data describing the Santa Monica Mountain region, including information about fire ignitions and the area burned by fires, the locations of human-built structures, roads, trails and the wildland-urban interface, as well as data about the local climate and terrain. Syphard collaborated with the U.S. Forest Service's Northern Research Station in Evanston, Ill., to create the computer models.

"We found that, in terms of fire ignitions, the vast majority of fires are starting near human infrastructure or along roads in the wildland-urban interface. But, ultimately, the area burned by a fire is more a function of other biophysical variables such as the type of terrain, climate or vegetation," says Syphard.

By combining data about where fire ignitions are likely to occur with information about where fires are most likely to spread, Syphard identified and mapped places where the most destructive fires are likely to start in the Santa Monica Mountains. These spots are obvious targets for site interventions that will save structures and lives, while maximizing the limited resources designated for this purpose.

"The underlying issue here is that as we add more houses to the wildland-urban interface, we will get more fires," says Volker Radeloff, associate professor of forestry at the UW-Madison, who oversees the laboratory where Syphard works. "Alex's work shows us that at some point we'll have to make tough land use planning decisions in order to control wildfires."

"We need actions at all levels-by individual landowners, communities and at the federal level," says Radeloff. "We need federal policies that, at the very least, do not foster sprawl in the wildland-urban interface."

Alexandra Syphard | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>